

MANUAL

final
public (B)
2013-05-06
H10102-20e-ID-B.DOC

C++ Class Library

ID FEDM
Version 4.05.00

Part A

Software-Support for OBID® Reader Families

Operating System Target Notes

32-Bit 64-Bit

Windows XP X (X) with 64-Bit OS: only with 32-Bit Runtime
Environment

Windows Vista / 7 X X

Windows CE X -

Linux X (X) with 64-Bit OS: only with 32-Bit Runtime
Environment

Apple Max OS X - X OS X V10.7.3 or higher
Architecture x86_64

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 2 (of 46) H10102-20e-ID-B.DOC

Note

 Copyright 2001-2013 by FEIG ELECTRONIC GmbH

 Lange Straße 4

 D-35781 Weilburg-Waldhausen

 eMail: obid-support@feig.de

This manual supercedes all previous editions.
The information contained in this manual is subject to change without notice.

Copying of this document, and giving it to others and the use or communication of the
contents thereof, are forbidden without express authority. Offenders are liable to the
payment of damages. All rights are reserved in the event of the grant of a patent or the
registration of a utility model or design.

The information contained in this manual has been gathered with all due care and to the best of our knowledge. FEIG
ELECTRONIC GmbH assumes no liability for the accuracy and completeness of the data in this manual. In particular,
FEIG ELECTRONIC GmbH cannot be held liable for consequential damages resulting from inaccurate or incomplete
information. Since even with our best efforts this document may still contain mistakes, please contact us should you find
any errors.

FEIG ELECTRONIC GmbH assumes no responsibility for the use of any information contained in this manual and
makes no representation that they free of patent infringement. FEIG ELECTRONIC GmbH does not convey any license
under its patent rights nor the rights of others.

The installation instructions given in this manual are based on advantageous boundary conditions. FEIG ELECTRONIC
GmbH does not give any guarantee promise for perfect function of an OBID®-system in cross surroundings.

OBID® and OBID i-scan® are registered trademarks of FEIG ELECTRONIC GmbH.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Windows Vista is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries

Linux® is a registered trademark of Linus Torvalds.

Apple, Mac, Mac OS, OS X, Cocoa and Xcode are trademarks of Apple Inc., registered in the U.S. and other countries.

Electronic Product Code (TM) is a Trademark of EPCglobal Inc.

I-CODE® and Mifare® are registered Trademarks of Philips Electronics N.V.

Tag-it (TM) is a registered Trademark of Texas Instruments Inc.

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 3 (of 46) H10102-20e-ID-B.DOC

Licensing agreement for use of the software

This is an agreement between you and FEIG ELECTRONIC GmbH (hereafter "FEIG") for use of the ID FEDM C++ Class Library and
the present documentation, hereafter called licensing material. By installing and using the software you agree to all terms and
conditions of this agreement without exception and without limitation. If you are not or not completely in agreement with the terms and
conditions, you may not install the licensing material or use it in any way. This licensing material remains the property of FEIG
ELECTRONIC GmbH and is protected by international copyright.

§1 Object and scope of the agreement

1. FEIG grants you the right to install the licensing material provided and to use it under the following conditions.

2. You may install all components of the licensing material on a hard disk or other storage medium. The installation and use may
also be done on a network fileserver. You may create backup copies of the licensing material.

3. FEIG grants you the right to use the documented program library for developing your own application programs or program
libraries, and you may sell runtime files without licensing fees under the stipulation that these application programs or program
libraries are used to control devices and/or systems which are developed and/or sold by FEIG.

§2. Protection of the licensing material

1. The licensing material is the intellectual property of FEIG and its suppliers. It is protected in accordance with copyright,
international agreements and relevant national statutes where it is used. The structure, organization and code of the software are
a valuable business secret and confidential information of FEIG and its suppliers.

2. You agree not to change, modify, translate, reverse develop, decompile, disassemble the program library or the documentation or
in any way attempt to discover the source code of this software.

3. To the extent that FEIG has applied protection marks, such as copyright marks and other legal restrictions in the licensing
material, you agree to keep these unchanged and to use them unchanged in all complete or partial copies which you make.

4. The transmission of licensing material in part or in full is prohibited unless there is an explicit agreement to the contrary between
you and FEIG. Application programs or program libraries which are created and sold in accordance with §1 Par. 3 of this
Agreement are excepted.

§3 Warranty and liability limitations

1. You agree with FEIG that is not possible to develop EDP programs such that they are error-free for all application conditions. FEIG
explicitly makes you aware that the installation of a new program can affect already existing software, including such software that
does not run at the same time as the new software. FEIG assumes no liability for direct or indirect damages, for consequential
damages or special damages, including lost profits or lost savings. If you want to ensure that no already installed program will be
affected, you should not install the present software.

2. FEIG explicitly notes that this software makes it possible for irreversible settings and adaptations to be made on devices which
could destroy these devices or render them unusable. FEIG assumes no liability for such actions, regardless of whether they are
carried out intentionally or unintentionally.

3. FEIG provides the software „as is“ and without any warranty. FEIG cannot guarantee the performance or the results you obtain
from using the software. FEIG assumes no liability or guarantee that the protection rights of third parties are not violated, nor that
the software is suitable for a particular purpose.

4. FEIG call explicit attention the licensed material is not designed with components and testing for a level of reliability suitable for
use in or in connection with surgical implants or as critical components in any life support systems whose failure to perform can
reasonably be expected to cause significant injury to a human.
To avoid damage, injury, or death, the user or application designer must take reasonably prudent steps to protect against system
failures.

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 4 (of 46) H10102-20e-ID-B.DOC

§4 Concluding provisions

1. This Agreement contains the complete licensing terms and conditions and supercedes any prior agreements and terms. Changes
and additions must be made in writing.

2. If any provision this agreement is declared to be void, or if for any reason is declared to be invalid or of no effect, the remaining
provisions shall be in no manner affected thereby but shall remain in full force and effect. Both parties agree to replace the invalid
provision with one which comes closest to its original intention.

4. This agreement is subject to the laws of the Federal Republic of Germany. Place of jurisdiction is Frankfurt a. M.

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 5 (of 46) H10102-20e-ID-B.DOC

Contents:
1. Introduction .. 8

1.1. Overview of all OBID components .. 10

1.2. Supported 32- and 64-Bit Operating Systems .. 11

1.3. Supported Development Environments ... 11

2. Changes from the previous version ... 12

3. Installation .. 13

4. Overview ... 14

4.1. Class tree .. 14

4.2. Class structure diagram .. 14

4.3. Component diagram .. 16

4.4. Thread security... 17

5. Basic properties of the class library .. 18

5.1. Internal structure .. 18

5.2. Data containers .. 19

5.2.1. Data exchange ... 20

5.3. Access constants for temporary protocol data ... 22

5.4. Namespaces for reader configuration parameters .. 23

5.5. Tables .. 24

5.6. Protocol traffic.. 24

5.7. Initialization methods .. 25

5.8. Serializing ... 25

5.9. Error handling .. 26

5.10. Language support .. 26

6. Class description ... 27

6.1. FEDM_Base .. 27

6.1.1. Methods (public) .. 27

6.2. FEDM_DataBase ... 28

6.2.1. Attribute (public) ... 28
6.2.2. Methods (public) .. 29
6.2.3. Abstract methods (public) .. 29

6.3. FEDM_XMLBase ... 31

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 6 (of 46) H10102-20e-ID-B.DOC

6.3.1. Methods (public) .. 31

6.4. FEDM_XMLReaderCfgDataModul ... 32

6.4.1. Methods (public) .. 32

7. Global functions .. 33

7.1. FEDM_Functions .. 33

8. Appendix .. 36

8.1. Class Tree ... 36

8.2. List of error codes .. 37

8.3. List of reader families .. 40

8.4. List of protocol type constants ... 40

8.5. List of language constants .. 40

8.6. List of memory type constants.. 40

8.7. Macros .. 42

8.8. Revision history ... 43

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 7 (of 46) H10102-20e-ID-B.DOC

Notes concerning the documentation for this library

This manual describes a software library which is also available as annotated source code. For
this reason we have limited the documentation to what is absolutely necessary for understanding
the functionality and use of the classes. It is assumed that the user of this library reads the source
code and becomes familiar with the details using this document, the header files and the included
comments.

To understand the internal program sequences you will also have to refer to the system manuals
for whichever OBID® readers and OBID® function libraries you are using.

FEIG ELECTRONIC GmbH does not repeat the same information about OBID® readers in
different manuals or use cross-references to certain pages in a different document. This is
necessary due to the constant updating of manuals, and it prevents confusion caused by
information in out-of-date documents. The user of this library is therefore well advised to check
regularly that he has the must current manuals. If not, these can of course be obtained whenever
needed from FEIG ELECTRONIC GmbH.

Important notes:

You are only permitted to use this library if you have first agreed to the license conditions
on the back of this page.

Anyone is free to modify source code. Therefore you should work only with libraries you
have received directly from FEIG ELECTRONIC GmbH. In any case further transmission of
the source code is prohibited.

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 8 (of 46) H10102-20e-ID-B.DOC

1. Introduction

With its C++ Class Library ID FEDM FEIG ELECTRONIC GmbH provides you with another
component for simplifying development of user programs for OBID-RFID readers.

The C++ Class Library ID FEDM supports all OBID® reader families and can be considered an
additional protocol layer above the OBID® function libraries.

The library FEDM is for C++ highest level of a hierarchical structured, multi-tier FEIG library stack.
The following picture shows the multi-tier library stack.

The C++ Class Library ID FEDM is the introduction of an organizational principle for all OBID®
reader families which allows you to create similar program structures for all OBID® readers
regardless of the reader you are using. This organizational principle, which has been implemented
in the form of similar function interfaces in the OBID® function libraries as well, is here expanded to
data containers and control of the data stream and protocol traffic.

In spite of the uniform organizational principle, the view of the storable reader and transponder
data is still at a very low level. This means that as a programmer you are confronted with reader
parameters in bits and bytes and are offered transponder data only in the form of unorganized
data quantities. The advantage of this is that you have access to everything, but on the other hand
you have to carry out multiple operations in sequence if you want for example to write just a small
amount of data to a transponder. Additional simplification with respect to abstraction of data
streams and actions remains reserved for a higher-order module layer.

The C++ class library ID FEDM offers a simple way of serializing data for the reader configuration.
This makes it possible to store a complete reader configuration in an XML file, load it again later
and transfer it to the reader.

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 9 (of 46) H10102-20e-ID-B.DOC

The documentation for the C++ Class Library is in two parts: This document described only the
base classes and common features of the specialized reader classes. A detailed description of the
reader classes is contained in separate manuals.

Important note:

The ID FEDM class library undergoes a continuous adaptation process. We will make every effort
to retain the documented status. Bear in mind that changes are still possible however.

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 10 (of 46) H10102-20e-ID-B.DOC

1.1. Overview of all OBID components

The C++ Class Library ID FEDM builds upon other OBID® components. The overview shows which
other components are necessary for the respective reader family and intended interface. The
function libraries are all in the form of dynamic linked libraries (DLL or LIB).

Information on the OBID® function libraries can be found in the respective manuals. FEIG
ELECTRONIC will be happy to provide you with these documents on request in case you are
missing one.

The layering of libraries, which is evident in the overview, reflects the degree of specialization. The
lowest (physical) level with the kernel drivers takes over hardware-proximate protocol transfer. The
overlying protocol transfer layer with FECOM, FETCP and FEUSB.DLL provides an application
with the first function interface for the physical interfaces. An additional overlying layer contains the
OBID® reader-specific protocol layer (FERO, FERW, FERWA, FETRI, FEISC). This layer already
allows simplified communication with OBID® readers.

In more complex applications you must construct organization forms for the data transferred via
protocols. This is the job of the ID FEDM C++ Class Library. It in turn is located one layer above
the OBID® reader-specific protocol layer. It must now provide organization structures for all OBID®

FEDM_Base

FEDM_RWReader FEDM_RWAReader FEDM_TRIReader FEDM_ISCReader

FEDM_DataBase

Class Library FEDM

FEDM_ROReader

FEDM_RWAReaderModul FEDM_RWReaderModul

FEDM_RWAMLReader

FEDM_RWAMLReaderModul

FECOM FEUSB

FEISC FETRI FERWA FERW

Kernel-
Driver

RS232 RS485 USB

Kernel-Level

Function Libraries

FERO

FETCP

Kernel-
Driver

Ethernet

FEDM_XMLBase

FEDM_XMLReaderCfgDataModul

FEDM_ISCFunctionUnit

FEFU

FEDM_ISCReaderModule

Kernel-
Driver

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 11 (of 46) H10102-20e-ID-B.DOC

reader families. This objective is carried out using the base classes, the specialized reader classes
and the use of object-oriented methods such as overlaid methods, abstract base class
(FEDM_DataBase) and use of the Standard Template Library (STL).

The ID FEDM C++ Class Library does not have to be integrated into an application in its complete
form. Depending on the OBID® reader family you may use only the specialized reader class and
base classes along with the global functions and constants. The lower-level function libraries for
your reader class are however mandatory for the functionality of the reader class within the ID
FEDM C++ Class Library.

1.2. Supported 32- and 64-Bit Operating Systems

Operating System Target Notes

32-Bit 64-Bit

Windows XP X (X) with 64-Bit OS: only with 32-Bit Runtime
Environment

Windows Vista / 7 X X

Windows CE X -

Linux X (X) with 64-Bit OS: only with 32-Bit Runtime
Environment

Apple Max OS X - X OS X V10.7.3 or higher
Architecture x86_64

1.3. Supported Development Environments

Operating System Development Tool Supported

Windows XP / Vista / 7 Visual Studio 6 on request

Visual Studio 2005 / 2008 / 2010 yes, Professional Version or higher
required

Borland C++ Builder on request

Embarcadero C++ Builder on request

Windows CE eMbedded Visual C++ 4 no

Visual Studio 2005 / 2008 yes, Professional Version or higher
required

Linux GCC yes, for 32-Bit projects

Mac OS X GCC yes, for projects with x86_64 architecture

Xcode ≥ V4.3.2 yes, for projects with x86_64 architecture

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 12 (of 46) H10102-20e-ID-B.DOC

2. Changes from the previous version

• New global helper functions:

FEDM_ConvBcdCharToHexUChar and FEDM_ConvHexUCharToBcdChar

Please note also the revision history in the Appendix to this document.

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 13 (of 46) H10102-20e-ID-B.DOC

3. Installation

The installation is described in detail in part B (H10202-xe-ID-B) of class library documentation.

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 14 (of 46) H10102-20e-ID-B.DOC

4. Overview

Depending on the user’s requirements he will need a base class upon which to build his special
reader class, or he uses the existing reader class as a component with a defined interface –
something like a black box object. A diagram is shown below for each of these two application
scenarios.

4.1. Class tree

Class tree for a first overview. The classes FEDM_RWReaderModul, FEDM_RWAReaderModul
and FEDM_RWAMLReaderModul are currently still under construction.

4.2. Class structure diagram

The structure diagram shows the static structure of the C++ Class Library, class tree, FEDM-
specific data types and help classes.

The classes in the diagram contain only a few of the important attributes and methods.

FEDM_Base

FEDM_DataBase

FEDM_ROReader

FEDM_RWReader

FEDM_RWReaderModul

FEDM_RWAReader

FEDM_RWAReaderModul

FEDM_RWAMLReader

FEDM_RWAMLReaderModul

FEDM_TRIReader

FEDM_ISCReader

FEDM_XmlBase

FEDM_XMLReaderCfgDataModul

FEDM_ISCFunctionUnit

FEDM_ISCReaderModule

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 15 (of 46) H10102-20e-ID-B.DOC

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 16 (of 46) H10102-20e-ID-B.DOC

4.3. Component diagram

The component diagram shows another view of the ID FEDM C++ Class Library.

Only the most important methods are shown. Attributes have been omitted. For a more exact and
complete component diagram, see the documentation for the respective reader class.

Most of the methods represent an interface for all reader classes which is uniform and
independent of type. This makes it possible to run various reader families in an application using
the same algorithms.

Reader Class

FEDM_ISCReader SendProtocol

SetPortHnd

GetPortHnd

GetConfigPara

Function Library

ID FEISC

SetReaderHnd

GetReaderHnd

Serialize

SetConfigPara

SetBusAddress

GetBusAddress

Container
m_RFC_EEData

Container
m_TmpData

Container
m_RFC_RAMData

GetTableData

SetTableData

GetTableSize

FindTableIndex

GetLastProt

FEDM_ISOTAB_ARRAY
m_ISOTable

GetTableLength

ResetTable

GetLastError

GetLastStatus

GetErrorText

FindBaudRate

GetFamilyCode

GetStatusText

FEDM_BRMTAB_ARRAY
m_BRMTable

SetTableSize

GetData

SetData

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 17 (of 46) H10102-20e-ID-B.DOC

4.4. Thread security

In principle, all FEIG libraries are not fully thread safe. But respecting some guidance, a practical
thread security can be realized allowing parallel execution of communication tasks. One should
keep in mind, that all OBID® RFID-Reader works synchronously and can perform commands only
in succession.

On the level of the transport layer (FECOM, FEUSB, FETCP) the communication with each port
must be synchronized in the application, as the Reader works synchronously. Using multiple ports
and so multiple Readers from different threads simultaneously is possible, as the internal port
objects acts independently from each other. But it is not possible to communicate independently
from different threads with different Readers over one serial port of type RS485 or RS422. Yet
another limitation concerns the Scan function of FEUSB library. The scan over the complete USB
cannot be thread-safe, as a global kernel action is performed. To prevent mutual interactions, the
opening and closing of serial and USB connections must be serialized on application side.

On the level of the protocol layer (FEISC), parallelism can be realized only when each Reader
object represents exactly one physical Reader and is bound with an individual communication port.
This is not true for the four specialized functions FEISC_BuildxxProtocol and
FEISC_SplitxxProtocol, which use an internal global buffer for protocol data.

The library FEFU has no precautions for thread-safeness implemented. Thus, only one thread can
call FEFU functions at the same time. Thread-safeness must be implemented on application side.

The library FETCL for ISO 14443-4 compliant Transponders is thread-safe, only when each
Transponder object is connected with a different Reader object and only one APDU is exchanged
with each Reader at the same time. Even if the function FETCL_Apdu can be called
asynchronously, this means not, that multiple calls of FETCL_Apdu to the same Transponder
object are allowed. APDUs are not stored in a stack.

On the level of the C++ class library FEDM, parallelism can be realized when with each Reader
object only one method call is performed. Thread-safeness for each Reader object must be
implemented on application side. Parallelism with non-synchronized opening and closing of serial
and USB ports (ConnectCOMM, ConnectUSB) must be avoided.

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 18 (of 46) H10102-20e-ID-B.DOC

5. Basic properties of the class library

5.1. Internal structure

The function of a reader class – to which you can ultimately reduce the view when using the class
library – can be clearly seen in the following illustration: In the vertical axis are the data streams
which are moved using the (overlaid) methods GetData respectively GetConfigPara and SetData
respectively SetConfigPara, as well as GetTableData1 and SetTableData. You can also use the
Serialize method to move data between a reader class object and a file.

Reader Class (e.g. FEDM_ISCReader)

SendProtocol

GetData

Function Library
(e.g.FEISC)

Serialize

SetData

m_RFC_EEData

GetTableData

SetTableData

m_TmpData m_ISOTable

SetBusAddress

SetPortHnd

SetReaderHnd

FindTableIndex

GetConfigPara

SetConfigPara

The horizontal axis shows the control flow that is generated by the SendProtocol method, the only
communication method. It independently retrieves all the necessary data from the integrated data
containers before transmitting the send protocol and stores the received protocol data there as
well. This means the application must write all the data necessary for this protocol to the
corresponding data containers in the correct locations before invoking the SendProtocol. Likewise
the receive data are stored at particular locations in corresponding data containers.

The key to the protocol data are so-called access constants for temporary protocol data (e.g.
FEDM_ISC_TMP_READER_INFO_MODE) and namespaces for reader configuration parameters (e.g.

1 Not all reader classes have an implementation of GetTableData and SetTableData, i.e. those without an
integrated table.

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 19 (of 46) H10102-20e-ID-B.DOC

ReaderConfig::OperatingMode::Mode). Anywhere from a few dozen to a hundred constants and
namespaces can be defined for each reader class. The structure is the same for all reader classes
and is especially significant. This is described in detail in section 5.3. Access constants for
temporary protocol data and 5.4. Namespaces for reader configuration parameters. Since the
access constants are of essential important for the function of the protocol transfer, they are
described in detail in the documentation for the reader classes. The definition of each reader
configuration parameter in a namespace is documented in the system manual of the reader.

5.2. Data containers

Data containers have the job of structurally administrating all the parameters and transponder
data. Internally all data containers are organized as byte arrays in Motorola format (Big Endian).
This format corresponds to each OBID reader. Conversion into the Intel format required for Intel-
based PC’s (Little Endian) is handled by the overlaid access methods.

The byte arrays are organized in blocks of 32, 16 or 4 bytes each. This organization also
corresponds to the reader and transponder.

A total of 11 data containers are integrated in the abstract base class FEDM_DataBase. They all
have the size 0. The size of the required containers is determined by the derived reader class.
Unused data containers have a size of 0.

Data container Description

m_RFC_EEData for reader configuration parameters

m_RFC_RAMData for temporary reader configuration parameters

m_ACC_EEData for reader configuration parameters

m_ACC_RAMData for temporary reader configuration parameters

m_TmpData for general temporary protocol data

Data container especially for classic reader family (RW/RWA)

Data container Description

m_MjpData for temporary protocol data of a multijob-Poll

m_SN_Mem for transponder serial numbers

m_ID_Mem for transponder ID numbers

m_AC_Mem for transponder account data

m_PubMem for transponder public data blocks

m_SecMem for transponder secret data blocks

m_ConfMem for transponder configuration data

m_DateMem for transponder date data

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 20 (of 46) H10102-20e-ID-B.DOC

5.2.1. Data exchange

Access to the temporary protocol data is accomplished primarily using the overlaid methods
SetData and GetData. Each method invoke allows exactly one parameter to be read or written,
which is identified by an access constant (5.3. Access constants for temporary protocol data).

The data exchange with reader configuration parameters is accomplished primarily using the
overlaid methods SetConfigPara and GetConfigPara.

Alternately you can directly access the bytes in a data container, since they are stored in the class
FEDM_DataBase public. This method should only be used however for accessing by the byte.

The following chapters illustrate the use of GetData and SetData. The use of GetConfigPara and
SetConfigPara is analogous with the difference that the access constant is replaced by the string
of the namespace.

5.2.1.1. Constant data

int iErr = SetData(FEDM_ISC_TMP_READ_CFG_MODE, false); // bool
int iErr = SetData(FEDM_ISC_TMP_READ_CFG_MODE, FALSE); // BOOL
int iErr = SetData(FEDM_ISC_TMP_READER_INFO_MODE, (UCHAR)0x01); // unsigned char
int iErr = SetData(FEDM_ISC_TMP_READER_INFO_MODE, (UINT)0x001); // unsigned int
int iErr = SetData(FEDM_ISC_TMP_READER_INFO_MODE, (CString)"0001"); // CString bzw. AnsiString
int iErr = SetData(FEDM_ISC_TMP_READER_INFO_MODE, (string)"0001"); // STL-string

5.2.1.2. Data type bool

bool bData = false;
int iErr = GetData(FEDM_ISC_TMP_INP_STATE_IN1, &bData);
int iErr = SetData(FEDM_ISC_TMP_READ_CFG_MODE, bData);

5.2.1.3. Data type BOOL

BOOL bData = FALSE;
int iErr = GetData(FEDM_ISC_TMP_INP_STATE_IN1, &bData);
int iErr = SetData(FEDM_ISC_TMP_READ_CFG_MODE, bData);

5.2.1.4. Data type unsigned char (UCHAR)

UCHAR ucData = 0x01;
int iErr = GetData(FEDM_ISC_TMP_INP_STATE, &ucData);
int iErr = SetData(FEDM_ISC_TMP_READER_INFO_MODE, ucData);

5.2.1.5. Data type unsigned char[] (UCHAR[])

UCHAR ucData[] = {0x01, 0x34};
int iErr = GetData(FEDM_ISC_TMP_SOFTVER_SW_REV, ucData, 2);
int iErr = SetData(FEDM_ISC_TMP_B0_REQ_DB_ADR_EXT, ucData, 2);

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 21 (of 46) H10102-20e-ID-B.DOC

5.2.1.6. Data type int

int as a data type cannot be directly supported because data type BOOL is already defined as int.
Instead, the cast operator UINT or unsigned int must be placed in front.

int iData = 0;
int iErr = GetData(FEDM_ISC_TMP_B0_RSP_DB_EXT_ADR_E, (UINT*)&iData);
int iErr = SetData(FEDM_ISC_TMP_B0_REQ_DB_ADR_EXT, (UINT)iData);

5.2.1.7. Data type unsigned int (UINT)

UINT uiData = 0;
int iErr = GetData(FEDM_ISC_TMP_B0_RSP_DB_EXT_ADR_E, &uiData);
int iErr = SetData(FEDM_ISC_TMP_B0_REQ_DB_ADR_EXT, uiData);

5.2.1.8. Data type __int64

__int64 i64Data = 0;
int iErr = GetData(FEDM_ISC_TMP_B0_RSP_DB_EXT_ADR_E, &i64Data);
int iErr = SetData(FEDM_ISC_TMP_B0_REQ_DB_ADR_EXT, i64Data);

5.2.1.9. Data type CString resp. AnsiString (VC++, C++Builder) and STL-string

ALL data that are read with a string method (CString, AnsiString, string) are hex strings. This
means for example that the numerical value 159 is not sent as “159” but rather as “9F”. FEDM-
compatible string values thus always consist of an even number of characters. To convert string
values into other data types or the reverse, use the function collection in FEDM_Functions.

To convert numerical values into strings which as in the above example make a „159“, you should
use the functions from the ANSI C library (e.g., sprintf and, for the other direction, sscanf).

CString sBusAdr;
int iErr = GetData(FEDM_ISC_TMP_INP_STATE, sBusAdr);
int iErr = SetData(FEDM_ISC_TMP_READ_CFG_MODE, sBusAdr);

string sStlBusAdr;
int iErr = GetData(FEDM_ISC_TMP_INP_STATE, sStlBusAdr);
int iErr = SetData(FEDM_ISC_TMP_READ_CFG_MODE, sStlBusAdr);

5.2.1.10. Direct, addressed access

In some programming cases (e.g., looping, copying operations) the access parameters are too
static. The solution is to use a second collection of parameterizable GetData and SetData
methods. These methods are supported by useful help functions in FEDM_Functions (s. 7.1.
FEDM_Functions).

Supported data types are UCHAR, UCHAR[], UINT, __int64 and CString or AnsiString. Their use
is analogous to the examples shown above.

CHAR ucBusAdr = 0;
int iMemID = FEDM_GetMemIDOfID(FEDM_ISC_TMP_SOFTVER);

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 22 (of 46) H10102-20e-ID-B.DOC

int iAdr = FEDM_GetAdrOfID(FEDM_ISC_TMP_SOFTVER);
int iErr = GetData(iAdr, ucVersionInfo, 11, iMemID);

5.3. Access constants for temporary protocol data

The access constants play a central role in the data traffic between the application program and
data containers for temporary protocol data in the class library, as well as within the class library
between protocol method and data containers. They both identify the parameter and contain the
storage location (in coded form) in one of the data containers.

An access constant is a string and generally is structured as follows:

#define FEDM_ISC_TMP_READER_INFO_MODE

Component Name

Reader Family

 “ 03 10 20 00 01 00 00“

 FC MM BN BY NB BI Nb

Memory Type

Parameter Name

FC Family Code (s. FEDM.H) 0..99
MM Memory Type (s. FEDM.H) 0..99
BN Block Number 0..99
BY 1. Byte in Block 0..99
NB Number of Bytes 0..99
BI 1. Bit in Byte 0..08
Nb Number of Bits 0..99

These access constants are used only with the methods SetData and GetData. The access
constant says nothing about the data type of a protocol parameter. This is determined only by the
data type of the access method. This means in the example above you could read the bus address
shown either as an integer or a string or another plausible data type (s. 5.2.1. Data exchange).

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 23 (of 46) H10102-20e-ID-B.DOC

5.4. Namespaces for reader configuration parameters

The data exchange between an application and the data container for reader configuration
parameters in the reader class is realized with overloaded methods which passes a string
representing the name of the configuration parameter. All names of reader configuration
parameters of all OBID® readers are unified and divided in hierarchical order in groups and
subgroups separated by a colon.

Detail of the tree order of the namespaces

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 24 (of 46) H10102-20e-ID-B.DOC

5.5. Tables

Some Reader families support protocols that can transport data for multiple transponders (e.g.
ISO commands for the OBID i-scan® Reader family) or some sequential actions with multiple
transponders for another Reader family result in a data content (e.g. data from LogDataKeys in the
megalock product line) which make storage in the containers impossible. Ideally, this data is
stored in the structured form of a table. Although these tables are not included in the basic
classes, the basic classes nevertheless use the abstract methods GetTableData, SetTableData
and FindTableIndex for the exchange of table data as well as the methods GetTableSize,
SetTableSize, GetTableLength and ResetTable to support the administration of tables
implemented in Reader classes. The use of these methods is therefore unified for all Reader
families.

Access to data from a table contained in the Reader class using the methods SetTableData and
GetTableData is done using unique constants like in SetData and GetData, but they do not
represent a string and therefore do not contain any place coding.

Instead, the constant for the table type, the table index and the constant for the table value
enables unique identification of a table value.

Example:

int iErr = GetTableData(int iIdx, UINT uiTableID, UINT uiDataID, ...)

Data types supported are bool, UCHAR, UINT, __int64 and CString rsp. AnsiString and STL-
string.

Two additional Set/GetTableData methods are provided for block access to transponder data and
support the data types UCHAR[], CString rsp. AnsiString and STL-string.

5.6. Protocol traffic

Protocol traffic is generated with the method SendProtocol. This gets only the control byte of the
desired protocol. All the data necessary for the protocol transfer are taken from the data
containers resp. tables. You must therefore ensure that all the protocol data have first been
updated. SendProtocol is contained in FEDM_DataBase as an abstract method and is
implemented only in the reader class.

Most of the reader families are bus-compatible and require the bus address in the protocol. This
should be set using the method SetBusAddress of the FEDM_DataBase class.

Implementation of SendProtocol invokes DLL functions that always require a reader handle as the
first parameter. This reader handle must be initialized using the method SetReaderHnd before first
invoking SendProtocol.

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 25 (of 46) H10102-20e-ID-B.DOC

5.7. Initialization methods

Before using the protocol method for the first time, some initializing must be performed:

1. Bus address The bus address for the Reader is preset in the class for 255. To set a
different address, use the SetBusAddress method.

2. ReaderHandle The handle of a Reader object in a FExxx-function library must always
be stored in an instance of the Reader class using the SetReaderHnd
method.

3. PortHandle The handle for an interface that was opened with FECOM, FETCP or
FEUSB must be stored in the Reader object of a FExxx-function library.
This can be done either by creating the Reader object using
FExxx_NewReader or after the fact by using the method SetPortHnd.
Making the change after the fact is also always possible if you need to
change the port during run time.

4. Language support Error texts can be invoked in several languages. You can set the
language using the SetLanguage method. The preset is for English.

5. Table size Some reader classes do not automatically set the size of an internal
table. To make this setting, use the SetTableSize method.

6. Other Some Reader classes have additional initialization methods. These are
described in the documentation for the respective Reader class.

5.8. Serializing

The two integrated serializing methods allow you to save data from the data containers into a file
or to load data from a file into data containers:

int Serialize(bool bRead, char* sFleName);

int Serialize(CArchive& ar, int iMemType);

The first and most important version of serialize supports XML data format. One invoking serializes
the entire reader configuration. Knowledge of the classes FEDM_XMLBase and
FEDM_XMLReaderCfgDataModul is not necessary.

The second version is only suited for MFC-based applications. Each time serialize is invoked, only
the contents of a data container can be serialized. Knowledge of the MFC class CArchive is
presumed. This method is no longer available for the OBID i-scan® family.

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 26 (of 46) H10102-20e-ID-B.DOC

5.9. Error handling

Nearly all the methods of the class library carry out internal error checking and return a negative
value when an error is discovered. The error codes for the ID FEDM Class Library and the OBID®
function libraries are organized into sectors such that they cannot overlap. The following ranges
are reserved for the ID FEDM Class Library and the OBID® function libraries:

Library Value range for error codes

ID FEDM -101 ... -999

ID FECOM -1000…-1099

ID FEUSB -1100…-1199

ID FETCP -1200…-1299

ID FERW -2000…-2099

ID FERWA -3000…-3099

ID FETRI -3100…-3199

ID FEISC -4000…-4099

ID FEFU -4199…-4100

ID FETCL -4299…-4200

The method GetErrorText for the reader class can open an English error text for the error code.
The sent error code can also come from the range of an OBID® function library.

The last error code is stored in the data container m_TmpData and can be obtained using the
member method GetLastError.

5.10. Language support

Error texts can be output in several languages. This setting is made using the SetLanguage
method. The following languages are currently supported:

Language Handover parameter

German 7

English (default) 9

When an error text is invoked from an OBID® function library, the handover from this text is in the
defined language.

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 27 (of 46) H10102-20e-ID-B.DOC

6. Class description

6.1. FEDM_Base

The base class FEDM_Base represents the base class of the ID FEDM C++ Class Library. It
contains only methods for the derived classes. Reader communication with an instance from this
class is not possible.

The header file FEDM_Base.h also contains the definition of the standard array
FEDM_BYTE_ARRAY, which is used for all data containers.

6.1.1. Methods (public)

Method Description

GetLibVersion Returns in a C-string the version number of the library.

GetData The executing (overlaid) method for reading a parameter value from a data container. This
method can only be used by the derived class FEDM_DataBase or the reader class likewise
derived from it.

SetData The executing (overlaid) method for writing a parameter value to a data container. This
method can only be used by the derived class FEDM_DataBase or the reader class likewise
derived from it.

GetLanguage Returns the constant for the language.

SetLanguage Sets the language for error strings.

GetFeComFunction The function pointer for the library FECOM is returned. If the library was not yet incorporated
into the address space, it is loaded and remains in the address space. In the destructor the
DLL is then again unloaded.

IMPORTANT: The pre-processor definition FEDM_COM_SUPPORT must be used!

GetFeUsbFunction The function pointer for the library FEUSB is returned. If the library was not yet incorporated
into the address space, it is loaded and remains in the address space. In the destructor the
DLL is then again unloaded.

IMPORTANT: The pre-processor definition FEDM_COM_SUPPORT must be used!

GetFeTcpFunction The function pointer for the library FETCP returned. If the library was not yet incorporated into
the address space, it is loaded and remains in the address space. In the destructor the DLL is
then again unloaded.

IMPORTANT: The pre-processor definition FEDM_COM_SUPPORT must be used!

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 28 (of 46) H10102-20e-ID-B.DOC

6.2. FEDM_DataBase

The FEDM_DataBase class is a base class derived from FEDM_Base that provides data
containers and overlaid access methods corresponding to the data types in the data containers.
The size of the data containers is 0. The size is specified in the reader class derived from
FEDM_DataBase.

In addition the class contains a number of abstract methods that must be implemented in each
reader class. Abstract methods permit writing of algorithms which are independent of the reader
type if you invoke the methods of FEDM_DataBase instead of the reader class methods having
the same name. This also results in a type-independent interface.

6.2.1. Attribute (public)

Attribute Description Reader family Organisation

FEDM_BYTE_ARRAY
m_RFC_EEData

For reader configuration
parameters

ISC – RO - RW – RWA – TRI 16 bytes per block

FEDM_BYTE_ARRAY
m_RFC_RAMData

For temporary reader
configuration parameters

ISC 16 bytes per block

FEDM_BYTE_ARRAY
m_ACC_EEData

For reader configuration
parameters

ISC 32 bytes per block

FEDM_BYTE_ARRAY
m_ACC_RAMData

For temporary reader
configuration parameters

ISC 32 bytes per block

FEDM_BYTE_ARRAY m_TmpData For general temporary
protocol data

ISC – RO - RW – RWA - TRI 32 bytes per block

FEDM_BYTE_ARRAY m_MjpData For temporary protocol data
of a multijob-Poll

RWA – TRI 16 bytes per block

FEDM_BYTE_ARRAY m_SN_Mem For transponder serial
numbers

RW – RWA - TRI 16 bytes per block

FEDM_BYTE_ARRAY m_ID_Mem For transponder ID numbers RW – RWA 16 bytes per block

FEDM_BYTE_ARRAY m_AC_Mem For transponder account data RWA 16 bytes per block

FEDM_BYTE_ARRAY m_PubMem For transponder public data
blocks

RW – RWA – TRI 4 bytes per block

16 Byte each Block for
RWA

FEDM_BYTE_ARRAY m_SecMem For transponder secret data
blocks

RW – RWA 4 bytes per block

FEDM_BYTE_ARRAY m_ConfMem For transponder configuration
data

RW – RWA – TRI 4 bytes per block

FEDM_BYTE_ARRAY m_DateMem For transponder date data RWA - TRI 16 bytes per block

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 29 (of 46) H10102-20e-ID-B.DOC

6.2.2. Methods (public)

Method Description

SetReaderHnd Sets the handle obtained from the OBID reader-specific function library (FEISC, FERO,
FERW, FERWA, FETRI, ...).

GetReaderHnd Returns the handle obtained from the OBID reader-specific function library (FEISC, FERO,
FERW, FERWA, FETRI, ...).

SetBusAddress Sets the bus address for protocol traffic.

GetBusAddress Gets the bus address of the protocol traffic.

GetFamilyCode Gets the short string for the reader family classification.

GetReaderName Gets the short string of the reader name..

GetReaderType Gets the reader type.

Serialize Sub-method for implementing the XML interface.

SetData The central (overlaid) method for writing a parameter value to a data container. The
invocation is passed to the base class FEDM_Base after the data container type (memory
type constant) has been determined from the access constant. SetData supports the
following data types: bool, BOOL, UCHAR, UCHAR-Array, UNIT, __int64, CString resp.
AnsiString, STL-string and C-string.

A second variation allows read access by specifying the exact index and memory type
constant. This variation supports the following data types: UCHAR, UCHAR-Array, UNIT,
__int64 and CString resp. AnsiString.

GetData The central (overlaid) method for reading a parameter value from a data container. The
invocation is passed to the base class FEDM_Base after the data container type (memory
type constant) has been determined from the access constant. GetData supports the
following data types: bool, BOOL, UCHAR, UCHAR-Array, UNIT, __int64, CString resp.
AnsiString, STL-string and C-string.

A second variation allows write access by specifying the exact index and memory type
constant. This variation supports the following data types: UCHAR, UCHAR-Array, UNIT,
__int64 and CString resp. AnsiString.

6.2.3. Abstract methods (public)

Method Description

EvalLibDependencies Method verifies the compatibility with dependent function libraries

SendProtocol The central communication method.

FindBaudRate Detects the baudrate und protocol frame of the reader and adjusts the serial port.

GetLastProt Method for getting the last send or receive protocol.

SetPortHnd Transfers the handle obtained from the function library contained in the protocol transfer layer
(FECOM.DLL, FEUSB.DLL, …) to the function library contained in the OBID reader-specific
protocol layer (FEISC.DLL, FERW.DLL, FERWA.DLL, FETRI.DLL, ...).

GetPortHnd Gets the handle obtained from the function library contained in the protocol transfer layer
(FECOM.DLL, FEUSB.DLL, …) from the function library contained in the OBID reader-
specific protocol layer (FEISC.DLL, FERW.DLL, FERWA.DLL, FETRI.DLL, ...).

SetProtocolFrameSupport Selects the protocol type for communication with the reader

GetProtocolFrameSupport Queries the protocol type.

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 30 (of 46) H10102-20e-ID-B.DOC

Method Description

SetReaderType Method gets the ID of the reader type as a parameter and sets internal environment variables
for this reader type.

GetLastError Returns the last error code.

GetLastStatus Returns the status value of the last protocol.

GetErrorText Returns the text associated with the error code.

GetStatusText Returns the text corresponding to each status byte.

Serialize Main method for serializing. Allows serializing of the container data in files. Two versions are
implemented: one version for file type XML and a second version for MFC-based
applications.

SerializeIn Sub-method for implementing the XML interface.

SerializeOut Sub-method for implementing the XML interface.

GetTableData The central (overlaid) method for reading a parameter value or data blocks from a table.

This variation supports the following data types: bool, UCHAR, UCHAR-Array, UINT, __int64,
CString resp. AnsiString and STL-string.

SetTableData The central (overlaid) method for writing a parameter value or data blocks to a table.

This variation supports the following data types: bool, UCHAR, UCHAR-Array, UINT, __int64,
CString resp. AnsiString and STL-string.

FindTableIndex The central (overlaid) method for getting the table index based on a value.

This variation supports the following data types: UCHAR, UCHAR-Array, UINT, __int64,
CString resp. AnsiString..

VerifyTableData Equation of received with sent transponder data (only OBID i-scan® family)

GetTableSize Gets the size of a table.

SetTableSize Sets the size of a table.

GetTableLength Gets the number of valid table entries.

ResetTable Initializes the complete table or a single member of it.

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 31 (of 46) H10102-20e-ID-B.DOC

6.3. FEDM_XMLBase

Class FEDM_XMLBase is the base class for serializing object data in XML format. It contains all
the base methods, a series of attributes and the object tree for the XML structure.
FEDM_XMLBase is not a general XML class for any file. Rather, this class is especially tailored for
the specialized task of serializing reader configurations or similar object data. This also means it is
small compared with the powerful commercial or non-commercial XML libraries.

IMPORTANT: For including the XML serialization classes, the pre-processor definition
_FEDM_XML_SUPPORT must be set!

6.3.1. Methods (public)

Method Description

OpenDoc Opens an XML document

CloseDoc Closes an XML document

ReadDoc Reads the complete contents of the XML document

WriteDoc Writes the Unicode strings to the document

IsXmlDoc Checks whether the file opened with OpenDoc is an XML document

HasOBIDTag Checks whether the file opened with OpenDoc contains an OBID tag

BuildTag Builds a new tag structure

AddTagValue Adds the contents to a tag

AddTagAttrib Adds an attribute with value to a tag

AddTagItem Inserts the tag structure generated with BuildTag into the internal XML tree

FindTag Looks for a tag in the internal XML tree

GetTagValue Returns the contents of a tag

GetTagAttrib Returns an attribute with value of a tag

GetLastError Returns the contents of the internal error variable m_iLastError

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 32 (of 46) H10102-20e-ID-B.DOC

6.4. FEDM_XMLReaderCfgDataModul

Class FEDM_XMLReaderCfgDataModul is derived from the base class FEDM_XMLBase and has
been especially developed for serializing reader configuration data from the data containers
m_RFC_EEData and m_RFC_RAMData implemented in the reader class FEDM_DataBase.

6.4.1. Methods (public)

Method Description

Serialize Sub-method reads entire XML document and saves the reader configuration data in the data
containers of the reader class FEDM_DataBase.

SerializeOut Sub-method writes entire XML document with header and reader configuration data from the
data containers of the reader class FEDM_DataBase.

QueryDocType Opens an XML document and gets the document type (currently only „Reader Configuration
File“).

QueryDocVersion Opens an XML document and gets the document version (e.g. „1.0“).

QueryReaderFamily Opens an XML document and gets the reader family from the „reader family“ tag

QueryReaderType Opens an XML document and gets the reader type from the „reader-type“ tag.

GetComment Returns the comment text from the variable m_wsComment.

SetComment Saves the comment text in the variable m_wsComment. If there is no comment text, this is
written in SerializeOut to the XML document.

GetPrgName Returns the program name from the variable m_wsPrgName.

SetPrgName Saves the program name in the variable m_wsPrgName. If there is no program name, this is
written in SerializeOut to the XML document.

GetPrgVer Returns the program version from the variable m_wsPrgVer.

SetPrgVer Saves the program version in the variable m_wsPrgVer. If there is no program version, this is
written in serializeOut to the XML document.

GetHost Returns the TCP/IP host address from the variable m_wsHost. The TCP/IP host address is
inserted into the XML file of the ISOStart program.

GetPort Returns the port number from the variable m_wsPort. The communication mode (“Serial”,
“USB”, “TCP”) is inserted into the XML file of the ISOStart program.

GetCommMode Returns the communication mode from the variable m_wsCommMode. The communication
mode is inserted into the XML file of the ISOStart program.

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 33 (of 46) H10102-20e-ID-B.DOC

7. Global functions

7.1. FEDM_Functions

Function Description

FEDM_GetMemIDOfID Gets the memory type constant from the access constant. (s. 7.1. FEDM_Functions).

Example: FEDM_GetMemIDOfID(FEDM_ISCM_EE_COM_BUSADR) returns the value 3.

FEDM_GetAdrOfID Gets the address of a parameter from the access constant.

FEDM_GetByteCntOfID Gets the number of bytes that a parameter consists of from the access constant.

FEDM_ToRAM Access to parameters in the container m_RFC_RAMData with the access constant for the
container m_RFC_EEData.

FEDM_MdfyMemID Modifies the memory type constant of the access constant

FEDM_MdfyBlockNr Modifies the block number of the access constant.

FEDM_AddOff2BlockNr Adds an offset to the block number of the access constant.

FEDM_ConvHexCharToInt Converts a C-string with a hex string into an integer value. The string is allowed to contain a
maximum of 8 characters. All characters except 0..9, a..f, A..F are removed.

Example: sIn = "1122F05E" -> iOut = 287502430

FEDM_ConvHexCharToUInt Converts a C-string with a hex string into an unsigned integer value. The string is allowed to
contain a maximum of 8 characters. All characters except 0..9, a..f, A..F are removed.

Example: sIn = "1122F05E" -> uiOut = 287502430

FEDM_ConvHexCharToInt64 Converts a C-string with a hex string into a 64-bit integer value. The string is allowed to
contain a maximum of 16 characters. All characters except 0..9, a..f, A..F are removed.

Example: sIn = "1122F05E1122F05E" -> i64Out = 1234813534658031710

FEDM_ConvHexCharToUChar Converts a C-string with a hex string into a C-string. All characters except 0..9, a..f, A..F are
first removed.

Example: sIn = “1122F05E" --> ucOutBuf = {0x11, 0x22, 0xF0, 0x5E}

FEDM_ConvHexStrToInt Converts a hex string into an integer value. The string is allowed to contain a maximum of 8
characters. All characters except 0..9, a..f, A..F are removed.

Example: sIn = "1122F05E" -> iOut = 287502430

FEDM_ConvHexStrToUInt Converts a hex string into an unsigned integer value. The string is allowed to contain a
maximum of 8 characters. All characters except 0..9, a..f, A..F are removed.

Example: sIn = "1122F05E" -> uiOut = 287502430

FEDM_ConvHexStrToInt64 Converts a hex string into a 64-bit integer value. The string is allowed to contain a maximum
of 16 characters. All characters except 0..9, a..f, A..F are removed.

Example: sIn = "1122F05E1122F05E" -> i64Out = 1234813534658031710

FEDM_ConvHexStrToUChar Converts a hex string into a C-string. All characters except 0..9, a..f, A..F are first removed.

Example: sIn = “1122F05E" --> ucOutBuf = {0x11, 0x22, 0xF0, 0x5E}

FEDM_ConvHexUCharToInt Converts a C-string into an integer value. The C-string is allowed to contain a maximum of 4

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 34 (of 46) H10102-20e-ID-B.DOC

Function Description
characters.

Example: ucInBuf = {0x11, 0x22, 0xF0, 0x5E} -> iOut = 287502430

FEDM_ConvHexUCharToUInt Converts a C-string into an n unsigned integer value. The C-string is allowed to contain a
maximum of 4 characters.

Example: ucInBuf = {0x11, 0x22, 0xF0, 0x5E} -> uiOut = 287502430

FEDM_ConvHexUCharToInt64 Converts a C-string into a 64-bit integer value. The C-string is allowed to contain a maximum
of 8 characters.

Example: ucInBuf = {0x11, 0x22, 0xF0, 0x5E, 0x11, 0x22, 0xF0, 0x5E } -> iOut =
1234813534658031710

FEDM_ConvHexUCharToHexChar Converts a C-string into a C-string with a hex string.

Example: ucInBuf = {0x11, 0x22, 0xF0, 0x5E} -> sOut = “1122F05E“

FEDM_ConvHexUCharToHexStr Converts a C-string into a hex string.

Example: ucInBuf = {0x11, 0x22, 0xF0, 0x5E} -> sOut = “1122F05E“

FEDM_ConvHexUCharToBcdChar Converts an Byte-Array into a BCD-Array.

Example: ucInBuf = {0x02, 0x01, 0x00, 0x00, 0x01, 0x04} -> ucOutBuf = {0x21, 0x00, 0x14}

FEDM_ConvBcdCharToHexUChar Converts a BCD-Array into an Byte-Array.

Example: ucInBuf = {0x21, 0x00, 0x14} -> ucOutBuf = {0x02, 0x01, 0x00, 0x00, 0x01, 0x04}

FEDM_ConvIntToHexStr Converts an integer value into a hex string.

Example: iIn = 287502430 -> sOut = "1122F05E"

FEDM_ConvIntToHexUChar Converts an integer value into a C-string.

Example: iIn = 287502430 -> ucOutBuf = {0x11, 0x22, 0xF0, 0x5E}

FEDM_ConvIntToHexChar Converts an integer value into a C-string with a hex string.

Example: iIn = 287502430 -> sOut = "1122F05E"

FEDM_ConvUIntToHexStr Converts an unsigned integer value into a hex string.

Example: uiIn = 287502430 -> sOut = "1122F05E"

FEDM_ConvUIntToHexUChar Converts an unsigned integer value into a C-string.

Example: uiIn = 287502430 -> ucOutBuf = {0x11, 0x22, 0xF0, 0x5E}

FEDM_ConvUIntToHexChar Converts an unsigned integer value into a C-string with a hex string.

Example: uiIn = 287502430 -> sOut = "1122F05E"

FEDM_ConvInt64ToHexStr Converts a 64-bit integer value into a hex string.

Example: i64In = 1234813534658031710 -> sOut = "1122F05E1122F05E"

FEDM_ConvInt64ToHexUChar Converts a 64-bit integer value into a C-string.

Example: i64In = 1234813534658031710 -> iOutBuf = {0x11, 0x22, 0xF0, 0x5E, 0x11, 0x22,
0xF0, 0x5E }

FEDM_ConvInt64ToHexChar Converts a 64-bit integer value into a C-string with a hex string.

Example: i64In = 1234813534658031710 -> sOut = "1122F05E1122F05E "

FEDM_ConvTwoAsciiToUChar Converts two ASCII characters (0..9, a..f, A..F) into a char-value.

FEDM_RemNoHexChar Removes all non-ASCII characters from a string and copies the results to a C-string.

FEDM_IsHex Tests a string for ASCII characters (0..9, a..f, A..F).

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 35 (of 46) H10102-20e-ID-B.DOC

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 36 (of 46) H10102-20e-ID-B.DOC

8. Appendix

8.1. Class Tree

FEDM_Base

FEDM_DataBase

FEDM_ROReader

FEDM_RWReader

FEDM_RWReaderModul

FEDM_RWAReader

FEDM_RWAReaderModul

FEDM_RWAMLReader

FEDM_RWAMLReaderModul

FEDM_TRIReader

FEDM_ISCReader

FEDM_XmlBase

FEDM_XMLReaderCfgDataModul

FEDM_ISCFunctionUnit

FEDM_ISCReaderModule

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 37 (of 46) H10102-20e-ID-B.DOC

8.2. List of error codes

All listed error codes are located in the file FEDM.h.

Error constant Value Description

FEDM_MODIFIED 1 Indicates a modification of a container.

This is not an error.

FEDM_OK 0 No error

FEDM_ERROR_BLOCK_SIZE -101 Block size in the access constant is
incorrect

FEDM_ERROR_BIT_BOUNDARY -102 Bit boundary in the access constant is
incorrect

FEDM_ERROR_BYTE_BOUNDARY -103 Byte boundary in the access constant is
incorrect

FEDM_ERROR_ARRAY_BOUNDARY -104 Array boundary of a data container was
exceeded

FEDM_ERROR_BUFFER_LENGTH -105 Length of the data buffer is insufficient

FEDM_ERROR_PARAMETER -106 Unknown transfer parameter

FEDM_ERROR_STRING_LENGTH -107 Transferred string is too long

FEDM_ERROR_ODD_STRING_LENGTH -108 Transferred string contains an odd number
of characters

FEDM_ERROR_NO_DATA -109 No data in the protocol

FEDM_ERROR_NO_READER_HANDLE -110 No reader handle set

FEDM_ERROR_NO_PORT_HANDLE -111 No port handle set

FEDM_ERROR_UNKNOWN_CONTROL_BYTE -112 Unknown control byte

FEDM_ERROR_UNKNOWN_MEM_ID -113 Unknown memory ID

FEDM_ERROR_UNKNOWN_POLL_MODE -114 Unknown poll mode

FEDM_ERROR_NO_TABLE_DATA -115 No data in a table

FEDM_ERROR_UNKNOWN_ERROR_CODE -116 Unknown error code

FEDM_ERROR_UNKNOWN_COMMAND -117 Unknown command

FEDM_ERROR_UNSUPPORTED -118 No support for this parameter or function

FEDM_ERROR_NO_MORE_MEM -119 No more program memory available

FEDM_ERROR_NO_READER_FOUND -120 No reader found

FEDM_ERROR_NULL_POINTER -121 The transferred pointer is NULL

FEDM_ERROR_UNKNOWN_READER_TYPE -122 Unknown reader type

FEDM_ERROR_UNSUPPORTED_READER_TYPE -123 The Function doesn't support this reader
type

FEDM_ERROR_UNKNOWN_TABLE_ID -124 Unknown table constant

FEDM_ERROR_UNKNOWN_LANGUAGE -125 Unknown language constant

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 38 (of 46) H10102-20e-ID-B.DOC

Error constant Value Description

FEDM_ERROR_NO_TABLE_SIZE -126 The table has the size 0

FEDM_ERROR_SENDBUFFER_OVERFLOW -127 The Sendbuffer is full

FEDM_ERROR_VERIFY -128 Data are not equal

FEDM_ERROR_OPEN_FILE -129 File open error

FEDM_ERROR_SAVE_FILE -130 File save error

FEDM_ERROR_UNKNOWN_TRANSPONDER_TYPE -131 Unknown transponder type

FEDM_ERROR_READ_FILE -132 Read file error

FEDM_ERROR_WRITE_FILE -133 Write file error

FEDM_ERROR_UNKNOWN_EPC_TYPE -134 Unknown EPC-Typ

FEDM_ERROR_UNSUPPORTED_PORT_DRIVER -135 Function does not support the active
communication driver

FEDM_ERROR_UNKNOWN_ADDRESS_MODE -136 Unknown address mode

FEDM_ERROR_ALREADY_CONNECTED -137 Reader object is already connected with a
communication port

FEDM_ERROR_NOT_CONNECTED -138 Reader object is not connected with a
communication port

FEDM_ERROR_NO_MODULE_HANDLE -139 No module handle found

FEDM_ERROR_EMPTY_MODULE_LIST -140 The module list is empty

FEDM_ERROR_MODULE_NOT_FOUND -141 Module not found in module list

FEDM_ERROR_DIFFERENT_OBJECTS -142 Runtime objects are different

FEDM_ERROR_NOT_AN_EPC -143 IDD of transponder is not an EPC

FEDM_ERROR_OLD_LIB_VERSION -144 Old library file

(error code for Java/.NET-Libraries)

FEDM_ERROR_WRONG_READER_TYPE -145 Wrong reader type

FEDM_ERROR_CRC -146 CRC error in file

FEDM_ERROR_CFG_BLOCK_PREVIOUSLY_NOT_READ -147 Configuration block must be read first

FEDM_ERROR_UNSUPPORTED_CONTROLLER_TYPE -148 Unsupported controller type

FEDM_ERROR_VERSION_CONFLICT -149 Version conflict with one or more
dependent libraries

FEDM_ERROR_UNSUPPORTED_NAMESPACE -150 The namespace is not supported by the
reader type

FEDM_ERROR_TASK_STILL_RUNNING -151 Asynchronous task is still running

FEDM_ERROR_TAG_HANDLER_NOT_IDENTIFIED -152 TagHandler type could not be identified

FEDM_ERROR_UNVALID_IDD_LENGTH -153 Value of IDD-Length is out of range

FEDM_ERROR_UNVALID_IDD_FORMAT -154 Value of IDD-Format is out of range

FEDM_ERROR_UNKNOWN_TAG_HANDLER_TYPE -155 Unknown TagHandler type

FEDM_ERROR_UNSUPPORTED_TRANSPONDER_TYPE -156 Transponder- or Chip-Type is not supportet

FEDM_ERROR_CONNECTED_WITH_OTHER_MODULE -157 Only TCP/IP: a connection to the same
Reader still established by another Reader

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 39 (of 46) H10102-20e-ID-B.DOC

Error constant Value Description
module.

FEDM_ERROR_INVENTORY_NO_TID_IN_UID -158 Inventory with return of UID = EPC + TID,
but TID is missing

FEDM_XML_ERROR_NO_XML_FILE -200 File is not a XML document

FEDM_XML_ERROR_NO_OBID_TAG -201 File contains no element 'OBID'

FEDM_XML_ERROR_NO_CHILD_TAG -202 No sub-element found

FEDM_XML_ERROR_TAG_NOT_FOUND -203 Element not in the document

FEDM_XML_ERROR_DOC_NOT_WELL_FORMED -204 XML document not well-formed

FEDM_XML_ERROR_NO_TAG_VALUE -205 No content of element found

FEDM_XML_ERROR_NO_TAG_ATTRIBUTE -206 No attribute found

FEDM_XML_ERROR_DOC_FILE_VERSION -207 Unvalid document version

FEDM_XML_ERROR_DOC_FILE_FAMILY -208 The Document is for another reader family

FEDM_XML_ERROR_DOC_FILE_TYPE -209 Wrong file type

FEDM_XML_ERROR_WRONG_CONTROLLER_TYPE -210 Wrong controller type

FEDM_XML_ERROR_WRONG_MEM_BANK_TYPE -211 Wrong memory bank

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 40 (of 46) H10102-20e-ID-B.DOC

8.3. List of reader families

All listed constants are located in the file FEDM.h.

Reader constant Values Description

FEDM_RW_FAMILY 1

FEDM_RWA_FAMILY 2

FEDM_ISC_FAMILY 3

FEDM_TRI_FAMILY 4

FEDM_RO_FAMILY 5

8.4. List of protocol type constants

All listed constants are located in the file FEDM.h.

Protokolltyp-Konstante Wert Beschreibung

FEDM_PRT_FRAME_STANDARD 1 Voreinstellung

FEDM_PRT_FRAME_ADVANCED 2

8.5. List of language constants

All listed constants are located in the file FEDM.h.

Language constant Value Description

FEDM_LANG_GERMAN 7

FEDM_LANG_ENGLISH 9 preset

8.6. List of memory type constants

All listed constants are located in the file FEDM.h.

Memory type constant Value Description

FEDM_RFC_EEDATA_MEM 3 for reader configuration parameters

FEDM_RFC_RAMDATA_MEM 4 for temporary reader configuration parameters

FEDM_ACC_EEDATA_MEM 5 for reader configuration parameters

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 41 (of 46) H10102-20e-ID-B.DOC

Memory type constant Value Description

FEDM_ACC_RAMDATA_MEM 6 for temporary reader configuration parameters

FEDM_TMPDATA_MEM 10 for general temporary protocol data

FEDM_MJPDATA_MEM 11 for temporary protocol data of a multijob-Poll

FEDM_SN_MEM 20 for transponder serial numbers

FEDM_ID_MEM 21 for transponder ID numbers

FEDM_AC_MEM 22 for transponder account data

FEDM_PUB_MEM 23 for transponder public data blocks

FEDM_SEC_MEM 24 for transponder secret data blocks

FEDM_CONF_MEM 25 for transponder configuration data

FEDM_DATE_MEM 26 for transponder date data

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 42 (of 46) H10102-20e-ID-B.DOC

8.7. Macros

All listed macros are located in the file FEDM.h.

Macro Description

FEDM_CHK1 Checks whether the return value of a function is negative and returns the error code.

This macro can only be used in reader class.

FEDM_CHK2 Checks whether the return value of a function is negative and, if so, sets the global error
variable in FEDM_TMPDATA_MEM.

This macro can only be used in reader class.

FEDM_CHK3 Checks whether a pointer is NULL.

FEDM_CHK4 Checks whether the return value of a function is not 0 and, if so, sets the global error variable
in FEDM_TMPDATA_MEM.

This macro can only be used in reader class.

FEDM_CHK5 Checks whether a pointer is NULL and, if so, sets the global error variable in
FEDM_TMPDATA_MEM.

This macro can only be used in reader class.

FEDM_CHK6 Checks whether the return value of a function is negative and returns without an error code.

This macro can only be used in reader class.

FEDM_CHK7 Checks whether the return value of a function is negative and, if so, sets the global error
variable in FEDM_TMPDATA_MEM and returns with NULL.

This macro can only be used in reader class.

FEDM_CHK8 Checks, wether the value is null or negativ and if so, sets the global error variable to
FEDM_ERROR_STRING_LENGTH.

This macro can only be used in reader class.

FEDM_RETURN Sets the global error variable in FEDM_TMPDATA_MEM.

This macro can only be used in reader class.

FEDM_IS_COPPORT Checks whether the port handle is a handle of a serial port.

FEDM_IS_USBPORT Checks whether the port handle is a device handle of a USB port.

FEDM_IS_TCPPORT Checks whether the port handle is a socket handle of a TCP/IP port.

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 43 (of 46) H10102-20e-ID-B.DOC

8.8. Revision history

V4.03.00

• New error code: FEDM_ERROR_INVENTORY_NO_TID_IN_UID

V4.02.00

• This new version is not compatible with the former version. More update descriptions can be
found in the manual of part B.

• Windows:

1. Migration from Visual Studio 2005 to Visual Studio 2010.

2. First release of 64-Bit version

3. Dynamic binding to Log-Manager

• First Release for Mac OS X, V10.7.3 or higher

V4.00.00

• This new version is not compatible with the former version. More update descriptions can be
found in the manual of part B.

V3.03.00

• This new version might not be fully compatible with the former version, dependent from the
used classes, methods and constants.

• More update descriptions can be found in the manual of part B.

V3.01.00

• This new version might not be fully compatible with the former version, dependent from the
used classes, methods and constants.

• USB support for Windows CE

• New error codes

V3.00.00

• This new version might not be fully compatible with the former version, dependent from the
used classes, methods and constants.

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 44 (of 46) H10102-20e-ID-B.DOC

• USB support for Linux

• Dynamic link libraries (DLL/SO) available

• New directory organisation for sources

• Only single include file

• New error codes

• The Access Constants for configuration parameters are replaced by the namespace
ReaderConfig (actually only for OBID i-scan® family)

• Renaming of the following constants

Old constant New constant

FEDM_EEDATA_MEM FEDM_RFC_EEDATA_MEM

FEDM_RAMDATA_MEM FEDM_RFC_RAMDATA_MEM

• Renaming of the following variables in the class FEDM_DataBase

Old name New name

EEData m_RFC_EEData

RAMData m_RFC_RAMData

TmpData m_TmpData

V2.05.06

• The Linux library is compiled with GCC 3.3.3 under SuSE Linux 9.1

V2.05.01

• Modified licence agreement

V2.05.00

• New reader class FEDM_ISCReaderModule (s. Part B of the manual collection)

• New globale functions for converting HexChar to different other data types
(FEDM_ConvHexCharTo...)

V2.04.00

• Optional static bindung with pre-processor definition _FEDM_SUPPORT_SLINK

V2.03.00

• The blocksize of the byte array TmpData for temporary data is changed from 16 to 32.

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 45 (of 46) H10102-20e-ID-B.DOC

• New pre-processor definition _FEDM_XML_SUPPORT for including the XML serialization
classes. This option was not necessary in previous versions. In front of the re-compilation of a
project, this definition must be set, if the XML serialization classes are used.

• New pre-processor definition _FEDM_MFC_SUPPORT for including the MFC classes
(basically CString and CArchive). This option was not necessary in previous versions. In front
of the re-compilation of a project, this definition must be set, if the MFC classes are used.

V2.02.00

• No changes in the base classes.

V2.01.00

• No changes in the base classes.

V2.00.00

• No changes in the base classes.

V1.09.10

• New error codes.

• Support for Advanced Protocol Length with two length bytes.

V1.08.00

• Implements new classes FEDM_XMLBase and EDM_XMLReaderCfgDataModul Interface for
serializing reader configuration in XML format.

• FEDM_DataBase::GetFamilyCode function was changed and is no longer compatible with the
previous version.

• New functions in abstract base class FEDM_DataBase: GetReaderName, GetReaderType,
SetReaderType and three new serialize functions.

• Support for USB readers.

• Supports TCP/IP interface.

• Conversion to dynamic linking of the communications libraries (FECOM, FETCP, FEUSB)
using function pointers. This results in new functions in the base class FEDM_Base:
GetFeComFunction, GetFeTcpFunction, GetFeUsbFunction

• Support for data type bool, __int64 and STL-string for the functions GetTableData,
SetTableData, FindTableData.

• Flexible incorporation of the communications libraries (FECOM, FETCP, FEUSB) using pre-
processor definitions.

OBID® Manual Part A ID FEDM V4.05.00

FEIG ELECTRONIC GmbH page 46 (of 46) H10102-20e-ID-B.DOC

• Flexible compiling for Windows or Linux using pre-processor definitions.

• New error codes.

V1.06.00

• New classes FEDM_RWAMLReader, FEDM_RWReaderModul, FEDM_RWAReaderModul and
FEDM_RWAMLReaderModul.

• Support of GNU C-Compiler under Linux.

V1.05.00

• internal version.

V1.04.00

• New classes for Read-Only reader family and for megalock products.

V1.03.00

• Language support with new functions SetLanguage und GetLanguage. German and english
strings are implemented.

• Setting of table sizes during run-time with the new function SetTableSize. This function is not
supported in every reader class.

• The function ResetTable has a new parameter.

• The functions GetData and SetData of the base class FEDM_Base are now public.

V1.02.00

• Porting to Borland C++Builder is finished.

• Error handling in FEDM_DataBase completed.

• Minor errors corrected, minor additions

• New abstract functions in the base class FEDM_DataBase

V1.00.00

• First release version

	Licensing agreement for use of the software
	Introduction
	Overview of all OBID components
	Supported 32- and 64-Bit Operating Systems
	Supported Development Environments

	Changes from the previous version
	Installation
	Overview
	Class tree
	Class structure diagram
	Component diagram
	Thread security

	Basic properties of the class library
	Internal structure
	Data containers
	Data exchange
	Constant data
	Data type bool
	Data type BOOL
	Data type unsigned char (UCHAR)
	Data type unsigned char[] (UCHAR[])
	Data type int
	Data type unsigned int (UINT)
	Data type __int64
	Data type CString resp. AnsiString (VC++, C++Builder) and STL-string
	Direct, addressed access

	Access constants for temporary protocol data
	Namespaces for reader configuration parameters
	Tables
	Protocol traffic
	Initialization methods
	Serializing
	Error handling
	Language support

	Class description
	FEDM_Base
	Methods (public)

	FEDM_DataBase
	Attribute (public)
	Methods (public)
	Abstract methods (public)

	FEDM_XMLBase
	Methods (public)

	FEDM_XMLReaderCfgDataModul
	Methods (public)

	Global functions
	FEDM_Functions

	Appendix
	Class Tree
	List of error codes
	List of reader families
	List of protocol type constants
	List of language constants
	List of memory type constants
	Macros
	Revision history
	V4.03.00
	V4.02.00
	V4.00.00
	V3.03.00
	V3.01.00
	V3.00.00
	V2.05.06
	V2.05.01
	V2.05.00
	V2.04.00
	V2.03.00
	V2.02.00
	V2.01.00
	V2.00.00
	V1.09.10
	V1.08.00
	V1.06.00
	V1.05.00
	V1.04.00
	V1.03.00
	V1.02.00
	V1.00.00

