C3iD MANUAL

Welcome fo RFID

ID FEUSB

Version 4.02.04 (Windows)
Version 4.02.02 (Windows CE)
Version 4.02.00 (Linux)

Software-Support for USB

Universal Serial Bus

Operating System Target Notes

32-Bit 64-Bit

Windows XP X X) with 64-Bit OS: only with 32-Bit Runtime
Environment

Windows Vista / 7 X X

Windows CE X

Linux X X) with 64-Bit OS: only with 32-Bit Runtime

Environment

Apple Max OS X - X OS X V10.7.3 or higher
Architecture x86_64

final
public (B) F I
2012-12-12

H00501-17e-ID-B.doc ELECTRON!I

C

OBID® Manual ID FEUSB V4.02.04

Note

© Copyright 1999-2012 by FEIG ELECTRONIC GmbH
Lange Stral3e 4
D-35781 Weilburg-Waldhausen
Germany
Tel.: +49 6471 3109-0

http://www.feig.de

The indications made in these mounting instructions may be altered without previous notice. With the edition of these
instructions, all previous editions become void.

Copying of this document, and giving it to others and the use or communication of the
contents thereof, are forbidden without express authority. Offenders are liable to the
payment of damages. All rights are reserved in the event of the grant of a patent or the
registration of a utility model or design.

Composition of the information given in these mounting instructions has been done to the best of our knowledge. FEIG
ELECTRONIC GmbH does not guarantee the correctness and completeness of the details given and may not be held
liable for damages ensuing from incorrect installation.

Since, despite all our efforts, errors may not be completely avoided, we are always grateful for your useful tips.

FEIG ELECTRONIC GmbH assumes no responsibility for the use of any information contained in this manual and
makes no representation that they free of patent infringement. FEIG ELECTRONIC GmbH does not convey any license
under its patent rights nor the rights of others.

The installation-information recommended here relate to ideal outside conditions. FEIG ELECTRONIC GmbH does not
guarantee the failure-free function of the OBID® -system in outside environment.

OBID® and OBID i-scan® are registered trademarks of FEIG ELECTRONIC GmbH.
Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Windows Vista is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries

Linux® is a registered Trademark of Linus Torvalds.

Apple, Mac, Mac OS, OS X, Cocoa and Xcode are trademarks of Apple Inc., registered in the U.S. and other countries

FEIG ELECTRONIC GmbH Page 2 (of 52) HO00501-17e-ID-B.doc

http://www.feig.de/

OBID® Manual ID FEUSB V4.02.04

Licensing agreement for use of the software

This is an agreement between you and FEIG ELECTRONIC GmbH (hereafter "FEIG") for use of the ID FEUSB program library and the
present documentation, hereafter called licensing material. By installing and using the software you agree to all terms and conditions of
this agreement without exception and without limitation. If you are not or not completely in agreement with the terms and conditions,
you may not install the licensing material or use it in any way. This licensing material remains the property of FEIG ELECTRONIC
GmbH and is protected by international copyright.

§1 Object and scope of the agreement
1. FEIG grants you the right to install the licensing material provided and to use it under the following conditions.

2. You may install all components of the licensing material on a hard disk or other storage medium. The installation and use may
also be done on a network fileserver. You may create backup copies of the licensing material.

3. FEIG grants you the right to use the documented program library for developing your own application programs or program
libraries, and you may sell the runtime file FEUSB.DLL, FEUSBCE.DLL, LIBFEUSB.x.y.z.DYLIBl or LIBFEUSB.SO.x.y.z1 without
licensing fees under the stipulation that these application programs or program libraries are used only together with USB devices
developed by FEIG.

4. FEIG does not grant you the right to sell the USB driver files for Windows (OBIDUSB.SYS, OBIDUSB9.SYS, OBIDUSB.INF)
supplied with the USB devices separately. These USB driver files are to be sold only in conjunction with FEIG USB devices

§2. Protection of the licensing material

1. The licensing material is the intellectual property of FEIG and its suppliers. It is protected in accordance with copyright,
international agreements and relevant national statutes where it is used. The structure, organization and code of the software are
a valuable business secret and confidential information of FEIG and its suppliers.

2. You agree not to change, modify, translate, reverse develop, decompile, disassemble the program library or the documentation or
in any way attempt to discover the source code of this software.

3. To the extent that FEIG has applied protection marks, such as copyright marks and other legal restrictions in the licensing
material, you agree to keep these unchanged and to use them unchanged in all complete or partial copies which you make.

4. The transmission of licensing material in part or in full is prohibited unless there is an explicit agreement to the contrary between
you and FEIG. Application programs or program libraries which are created and sold in accordance with §1 Par. 3 of this
Agreement are excepted.

83 Warranty and liability limitations

1. You agree with FEIG that is not possible to develop EDP programs such that they are error-free for all application conditions. FEIG
explicitly makes you aware that the installation of a new program can affect already existing software, including such software that
does not run at the same time as the new software. FEIG assumes no liability for direct or indirect damages, for consequential
damages or special damages, including lost profits or lost savings. If you want to ensure that no already installed program will be
affected, you should not install the present software.

2. FEIG explicitly notes that this software makes it possible for irreversible settings and adaptations to be made on devices which
could destroy these devices or render them unusable. FEIG assumes no liability for such actions, regardless of whether they are
carried out intentionally or unintentionally.

3. FEIG provides the software ,as is“ and without any warranty. FEIG cannot guarantee the performance or the results you obtain
from using the software. FEIG assumes no liability or guarantee that the protection rights of third parties are not violated, nor that
the software is suitable for a particular purpose.

4. FEIG call explicit attention the licensed material is not designed with components and testing for a level of reliability suitable for
use in or in connection with surgical implants or as critical components in any life support systems whose failure to perform can
reasonably be expected to cause significant injury to a human.

To avoid damage, injury, or death, the user or application designer must take reasonably prudent steps to protect against system
failures.

! X.y.z represents the actual version number

FEIG ELECTRONIC GmbH Page 3 (of 52) HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

84 Concluding provisions

1. This Agreement contains the complete licensing terms and conditions and supercedes any prior agreements and terms. Changes
and additions must be made in writing.

2. If any provision this agreement is declared to be void, or if for any reason is declared to be invalid or of no effect, the remaining
provisions shall be in no manner affected thereby but shall remain in full force and effect. Both parties agree to replace the invalid
provision with one which comes closest to its original intention.

3. This agreement is subject to the laws of the Federal Republic of Germany. Place of jurisdiction is Frankfurt a. M.

FEIG ELECTRONIC GmbH Page 4 (of 52) HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

Content:

I [8 o Yo [U Yo { o o PP URPPPPTRTRTN 7
T o 1 o 4= o 1 RSP 9
11,1 WINAOWS XP / VISTA T 7 oottt ettt e e e e e ettt a e e e e e e e eennees 9
L.1.2. WINAOWS CE ... 9
000 R R T T OSSR 10
O |V = Vol @ 1 T 10

2. Changes since the Previous VEISION ... e eeeeeeee 11
T 15 =L =LA o] o IO PPPPPPPPPPPPPPPPP 12
3.1. 32-Bit WINAOWS XP/VISTA/Teeeiieiiiiiiiiiiiiiiiititiiiitiieie bbb 12

G T YV T o [0 XY 13

G R T 3 Y | S 0 G 14
3.3 Ll HDUSD s 14

K Y | |V - o 1 PRSP PPERR 15
e L TDUSD s 15

3.5. Deactivating the Plug-and-play Threadcccoooiiiiiiiiiiii e 16
4. Incorporating into the application Programoouviiiiiie e 17
4.1. Supported DevelopmeENt TOOIS ... e e et e e e e e aanae 17
4.2. Incorporating into Visual STUIOooii i 17
4.3. INCOrporating iNtO XCOOEccoiiiiiiiiiii e e e e e et e e e e e e e e e ettt a e e e eeeeeaenees 17
5. A brief introduction t0 USB ..o 18
6. Programming INTEITACE ..ot e e e e e eeaennes 20
L0 I O 1T R 20
LI N =T To BEST= o U 2SS 21
6.3. Structure and function of the Scan liSt ... 22
6.4, EVENT SIGNAIIING ...ui i a e aaaan 23
LR T U1 o3 A o T 1 SR 24
6.6. FUNCLION AESCIIPLIONS ..cciiiiiiii e e e e e e e e e e e e e e e e e eeaes 25
6.6.1. FEUSB_GEtDLLVEISION......ccctiuiiiiieeeei et e e e e e s e e e e e e e et aa s e e e aaeeannees 25
6.6.2. FEUSB_GetDrvVersion (only for WindOWS)ccoooiiiiiiiiiiiiiieeeeeeeeeeee 25
6.6.3. FEUSB GeIEITOITEXE ... iiieiiiiiiiiii ettt e et e e et e e et e e e e et e e e e nan e 26
6.6.4. FEUSB _GetLASIEITONceee e e e 26
B.6.5. FEUSB SCaN.....uuiiiiiiii it e e e e e et e e e 27

FEIG ELECTRONIC GmbH Page 5 (of 52) HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

6.6.6. FEUSB_SCanANAOPEN.......ccooiiiiiiiiiiii e 29
6.6.7. FEUSB_GetSCaANLISIPAra.........uciiiieiiiieiiiiiii e eee e e e e e e et eeaeaeannees 30
6.6.8. FEUSB GetSCaANLISISIZE......iiiiiiii et e et e e e e e e e et e e e et 31
6.6.9. FEUSB_ClearSCaNnLiSt.........cuuuuiiiiieeiiiiiiie et e e et s e e e e e e e e s e e e e e e eannnes 31
6.6.10. FEUSB_OPENDEVICEcceeiiiiiiie e ettt e ettt e e e e e e et e s e e e e e e e eeaatn e e e eeaeeeennens 32
6.6.11. FEUSB_CIOSEDEVICE oo 33
6.6.12. FEUSB _ISDEVICEPIESENLcutuiiiiieeeeieeiiie et e e e e e e e e e et e e e e e e e e aaeees 33
6.6.13. FEUSB_GetDEVICELIST......cceeiiiiiiiiiiieeeee e 34
6.6.14. FEUSB_GetDEeVICEHNA......couuiiii et e e e e e aanees 35
6.6.15. FEUSB_GetDeVICEPAra........ccooeiiiiiieiiiiieeee e 36
6.6.16. FEUSB_SetDEVICEPAIAcuuuuiii ettt e e et e e e e e e aaaees 37
6.6.17. FEUSB_AdAEVENTHANAIEKt e et e e e e e eannees 38
6.6.18. FEUSB_DelEVENTHANAIE!eeiieeeeece e e e e e aaaees 40
6.6.19. FEUSB_TIANSCERIVEcceieieiiiiiiii e e eeeeeiiii e s ettt s e e e e e e e e eata s s e e e eeeeanaenaaaeeeeeeensnnns 41
6.6.20. FEUSB _TranSMt......ciiiiiiiiiiiiiiiie e et e e e e e e e e e e et s e e e e e e e eaaaba e s e e eeeeeeannnes 42
6.6.21. FEUSB_RECEIVEccco e ittt a e eaeeees 42

7. Dynamic lINKING UNAEr CH ... e et e e e e e e eeaennes 43
S AN 01 L= o o 1 USSR 44
LS I 0T o0 Yo [44
8.2. List of parameter Identifiers ..o 46
8.3. List of constants for the FEUSB_EVENT _INIT StruCture.........cccovvvviiiiei e 47
8.4. List of constants for the FEUSB_SCANSEARCH structure........ccccccceiiiiiiiiiiiiiicieeeeee 48
8.5. List of cFamilyName in the FEUSB_SCANSEARCH structure.......ccccceeveevvvviiiiiinneeeee, 48
8.6. List of cDeviceName in the FEUSB_SCANSEARCH StruCture........ccccoevvevvviiiiiiiinneeeeee. 48
8. 7. REVISION NISTOIY ittt e e e e e e e e e e e e e e e e e e et e e aeeeeees 49

FEIG ELECTRONIC GmbH Page 6 (of 52) HO00501-17e-ID-B.doc

OBID® Manual

ID FEUSB V4.02.04

1. Introduction

The ID FEUSB support package is used to assist in programming communication-oriented
software with data transport over USB and supports the languages ANSI-C, ANSI-C++ as well as

any other language which can invoke the C-functions.

The support package offers a simple, device-independent function interface for USB devices in the
OBID® family for all supported Operating Systems. The FEUSB is usually combined with an

additional, device-specific function collection (e.g., ID FEISC).

The function collection is not designed to support any other USB devices except those

from the OBID® family.

This library package can be used with the following Operating Systems:

Operating System Target Notes

32-Bit 64-Bit

Architecture x86_64

Windows XP X X) with 64-Bit OS: only with 32-Bit Runtime
Environment

Windows Vista / 7 X X

Windows CE X

Linux X X) with 64-Bit OS: only with 32-Bit Runtime
Environment

Apple Max OS X - X OS X V10.7.3 or higher

The library FEUSB is part of the first level of a hierarchical structured, multi-tier FEIG library stack. It is only
designed for the data exchange between the USB driver of an Operating System with an application. The

following picture shows the multi-tier library stack.

C#Application C++ Application Java Application
Windows, Windews CE Windows, Windows CE, Linm, ‘Windows. Windows CE,
ambadied Linu, Max 05 X Linue, ambaddad Linus

OBIDIECANET

Managed C++, Plnvoke

XML-File with
Reader Flrmwars

Application-Level

Protocol-Level

Port-Level

System Driver FEIG-Driver System Driver

Java Mative Interface

KML-File with
Reader Configuration
Profile

XML-File with
Reader
Configuration

FEIG ELECTRONIC GmbH Page 7 (of 52)

H00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

Applications, based on the layer of FEUSB have to implement the protocol handling
(building/splitting of protocol frames, CRC check, check of protocol frame). Thus, the
implementation complexity is extensive and every Programmer should calculate the costs.

If the project forces to use only function libraries, the library FEISC from the next level should be
chosen as the best API.

FEIG ELECTRONIC GmbH Page 8 (of 52) HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

1.1. Shipment

This support package consists of files listed in the tables below. Normally, this package is shipped
together with other libraries in a Software Development Kit (SDK) — e.g. ID ISC.SDK.Win.

1.1.1. Windows XP / Vista/7

File Use

FEUSB.DLL DLL with all functions

FEUSB.LIB LIB file for linking for C/C++ projects
FEUSB.H Header file for C/C++ projects

Additionally, the following driver files are essential for the use of OBID® USB devices. They are
distributed with the Driver-CD, which is part of the USB device distribution or can be retrieved with
the FEIG Download Server.

File Use

OBIDUSB.SYS WHQL certified 32- and 64-Bit Windows kernel driver (XP/Vista/7) for OBID®
(V 2.50) readers with USB interface

OBIDUSB.INF Inf file for driver installation

1.1.2. Windows CE

Datei Verwendung

FEUSBCE.DLL DLL with all functions
FEUSBCE.LIB LIB file for linking for C/C++ projects
FEUSB.H Header file for C/C++ projects

Additionally, a platform dependent USB kernel driver is required and must be ordered separately.

FEIG ELECTRONIC GmbH Page 9 (of 52) HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

1.1.3. Linux

File Use

LIBFEUSB.SO.x.y.z" Function library

FEUSB.H Header file for C/C++ projects
Note:

The library is compiled under SUSE Linux 11.1 with the GNU Compiler Collection V4.3.2.
LIBFEUSB depends on the open source project libusb in the version 0.1.12 which is not part of
this support package. The binary of libusb can be downloaded from the project home page

http://libusb.sourceforge.net and must be installed separately.

1.1.4. Mac OS X

File® Use

LIBFEUSB.SO.x.y.z Function library

FEUSB.H Header file for C/C++ projects
Note:

LIBFEUSB depends on the open source project libusb in the version 0.1.13 beta which is not part
of this support package. The binary of libusb can be downloaded from the web page

http://www.ellert.se/twain-sane/ and must be installed separately.

! X.y.z. represents the version number of the library file

2 X.y.z represents the version number of the library file

FEIG ELECTRONIC GmbH Page 10 (of 52) HO00501-17e-ID-B.doc

http://libusb.sourceforge.net/

OBID® Manual ID FEUSB V4.02.04

2. Changes since the previous version

e Windows / Windows CE:
1. Workaround for ID ISC.MRU200 because of extended request of string descriptors

2. Deactivating of the Plug-and-Play Thread with file feusb.conf (s. 3.5. Deactivating the
Plug-and-play Thread)

Please note also the revision history in the Appendix to this document.

FEIG ELECTRONIC GmbH Page 11 (of 52) HO00501-17e-ID-B.doc

OBID®

Manual ID FEUSB V4.02.04

3. Installation

Normally, this package is shipped together with other libraries in a Software Development Kit
(SDK). Copy the SDK into a directory of your choice.

The files of this library package can be found in the sub-directory feusb-lib.

3.1. 32-Bit Windows XP/Vista/7

4 IDISCSDKWin V4.02.00 If you won't add your projects to the Samples path, we
fecom-lib recommend the following steps:
fedm-classlib e Copy FEUSB.DLL into the directory of the application
JaTHIE program (recommended) or into the Windows system
feisc-lib directory.
fetcl-lib
4 | fetcp-lib e Copy FEUSB.LIB into the project or LIB directory.
4 1. bin e Copy FEUSB.H into the project or INCLUDE directory.
x4
%86
doc
include
feusb-lib
Run
Samples

Driver installation of OBIDUSB.SYS must be performed before the first connecting of a FEIG USB
device into the PC. The installation is performed by an operating system wizard. For additional
information, refer to the documentation included in the driver package.

FEIG ELECTRONIC GmbH

Page 12 (of 52) HO0501-17e-ID-B.doc

OBID®

Manual

ID FEUSB V4.02.04

3.2. Windows CE

4 ID ISC.5DE.WinCE Standard5DE_500 x86 V4.00.08
dotnet
fecom-lib .
fedm-classlib
feisc-lib
fetep-lib
4 feushb-lib
4 bin_ce .
a4 standard_sdk5
4 *86
ws2008
doc

run

If you won't add your projects to the Samples path,
we recommend the following steps:

Copy FEUSBCE.DLL into the system directory
of the Windows CE system.

Copy FEUSBCE.LIB into the project or LIB
directory.

Copy FEUSB.H into the project or INCLUDE
directory

Driver installation of OBIDUSB.SYS must be performed before the first connecting of a FEIG USB
device into the PC. Installation instruction is part of the driver kit.

Note: you cannot use the DLL together with eMbedded Visual Basic 3.0.

FEIG ELECTRONIC GmbH

Page 13 (of 52)

HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

3.3. 32-Bit Linux

4 || IDISCSDK. Linu V4.02.00 Choose one option for installation:
C++

fecom-lib

Option 1: If an install.sh is shipped inside the SDK root
directory, execute this install script. It will copy all library files
into the directory /ust/lib and creates symbolic links for each

fedm-classlib

fefu-lib
fei::_:ib library file. The header file can be copied into a directory of
_ your choice.
fetcl-lib
fetcp-lib Option 2: Copy all files of this support package into a
4 . feusb-lib directory of your choice and create symbolic links for
4 1 bin libfeusb.so.x.y.z"* in the directory /ust/lib with the following
XB6 calls:
doc
[l etc cd /usr/lib
4 i udev In —s /< your_directory>/libfeusb.so.x.y.z libfeusb.so.x
les.d
incl:l-.;:s In —s /< your_directory>/libfeusb.so.x libfeusb.so

Idconfig

Usage of libfeusb.so.x.y.z without administration rights:
Requirements:
The udev daemon is running and handles the hotplugging of the usb devices.

The application chmod must be located in the dircetory /bin.

e copy the file 41-feig.rules to the directory /etc/udev/rules.d.

3.3.1. libusb

LIBFEUSB depends on the open source project libusb in the version 0.1.12 which is not part of
this support package. The binary of libusb can be downloaded from the project home page

http://libusb.sourceforge.net and must be installed separately.

! X.y.z represents the version number

FEIG ELECTRONIC GmbH Page 14 (of 52) HO00501-17e-ID-B.doc

http://libusb.sourceforge.net/

OBID® Manual ID FEUSB V4.02.04

3.4. 64-Bit Mac OS X

4 || IDISC.SDK.MacOSK V4.02.00 Choose one option for installation:

fedm-classlib

teisc-lib Option 1: If an install.sh is shipped inside the SDK root
directory, execute this install script. It will copy all library files

fetcl-lib
- I, into the directory /usr/local/lib and creates symbolic links for
fetcp-lib
20 fesnin each library file. The header file can be copied into a
E—— directory of your choice.
4 bin
x86_64 Option 2: Copy all files of this support package into a
doc directory of your choice and create symbolic links for
include libfeusb.x.y.z.dylib® in the directory /usr/localllib with the
samples following calls:cd /usr/local/lib

In —s libfeusb.x.y.z.dylib libfeusb.x.dylib
In —s libfeusb.x.dylib libfeusb.dylib

Note: The library is compiled under Mac OS X V10.7.3 with Xcode V4.3.2 and is compatible with
the architecture x86_64.

3.4.1. libusb

LIBFEUSB depends on the open source project libusb in the version 0.1.13 beta which is not part
of this support package. The binary of libusb can be downloaded from the web page

http://www.ellert.se/twain-sane/ and must be installed separately.

! X.y.z represents the version number

FEIG ELECTRONIC GmbH Page 15 (of 52) HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

3.5. Deactivating the Plug-and-play Thread

For observing the USB for OBID-.Readers a thread is internally started, to search cyclical for new
devices. Newly detected Reader are notified with the event mechanism (see 6.3. Event signalling)
if installed.

If this automatism is not applicable for your application you can prevent the start of the thread with
the following steps:

a) Create a file feusb.conf
b) Add the text nopnp

c) Save this file in the directory of the application

FEIG ELECTRONIC GmbH Page 16 (of 52) HO00501-17e-ID-B.doc

OBID®

Manual

ID FEUSB V4.02.04

4. Incorporating into the application program

4.1. Supported Development Tools

Operating System Development Tool Supported
Windows XP / Vista/ 7 Visual Studio 6 on request
Visual Studio 2005 / 2008 / 2010 yes, Professional Version or higher
required
Borland C++ Builder on request
Embarcadero C++ Builder on request
Windows CE eMbedded Visual C++ 4 yes
Visual Studio 2005 / 2008 yes, Professional Version or higher
required
Linux GCC yes, for 32-Bit projects
Mac OS X GCC yes, for projects with x86_64 architecture

Xcode 2 V4.3.2

yes, for projects with x86_64 architecture

4.2. Incorporating into Visual Studio

1.Add Include path for the header file in project settings (category C/C++)

2.Add fetcp.lib (optional with path) in project settings (category Linker)

4.3. Incorporating into Xcode

1.Add path for the header file in project settings (User Header Search Paths in category

Search Paths)

2.add feusb.dylib with drag’n drop to your project

FEIG ELECTRONIC GmbH

Page 17 (of 52)

HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

5. A brief introduction to USB

USB (Universal Serial Bus) represents a new standard for connecting peripherals in the PC
environment. Compared with the serial interface, USB features especially Plug&Play capability and
higher transfer speed. On the other hand, this new standard also requires deeper knowledge of
the characteristics of USB if you want to access USB devices from the user software.

The FEUSB function collection gives the application programmer the necessary help in
communicating with USB devices from the OBID® family. With the elementary knowledge provided
in this section, any practiced programmer will be able to develop professional application
programs.

USB is a single-master bus with the PC as master (host). Only this master can generate protocol
activities. Up to 127 physical devices can be supported at the same time. The devices differ in
their bus addresses, which are automatically assigned by the host. After a peripheral is plugged in,
an initialisation phase (enumeration) is automatically started in the host which allows the host to
load the appropriate driver(s). This process is always triggered by the operating system
(regardless of manufacturer).

In physical terms a USB device always consists of at least one logical USB device. This means the
communication data can be stacked within the device into several information channels, the so-
called pipes. Each pipe has an end point assigned to it which corresponds physically to a FIFO.

A logical USB device can combine several pipes into an interface, and the host can install an
appropriate driver for such an interface. The host obtains the information about the logical
composition of a USB device during enumeration.

USB devices from the OBID® family are characterized in that they all have uniform interfaces. This
means the special USB drivers can be categorized as device-independent within the OBID® family.
The programmer does now however come into contact with these drivers, interfaces, pipes or bus
addresses. For him a programming model has been developed which enables communication with
OBID® USB devices in no more than four steps.

1. Scan process: A function invoke detects all OBID® devices on the USB and administers them
in a scan list within the DLL.

2. Device selection: In the second step this scan list is used to select a USB device based on its
serial number. The serial number is by the way the only feature which distinguishes the
devices from each other.

3. Open communications path: In the third step a channel to this USB device is opened®. A data
structure, the device object, is created internally in the DLL.

! For readers interested in the details, we recommend ,Universal Serial Bus System Architecture, Second
Edition”, Don Anderson, Addison Wesley, 2001

> The special function FEUSB_ScanAndOpen combines steps 1, 2 and 3 together. This function can be used
if you are normally connecting only one USB device from the OBID® family.

FEIG ELECTRONIC GmbH Page 18 (of 52) HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

4. Data exchange: Beginning with the fourth step data can be exchanged with the USB device.

An OBID® USB device can have one or more interfaces, and all the programmer needs is the
FEUSB function collection in order to decide which data he has to send over which interface. For
this purpose an additional function collection is provided for each OBID® device family. The
programmer therefore does not need to deal with the peculiarities of the OBID® interface.

FEIG ELECTRONIC GmbH Page 19 (of 52) HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

6. Programming interface

6.1. Overview

The FEUSB combines for the user all the necessary functions and parameters for administering
one or more simultaneously opened OBID® USB devices on the USB port of the PC. The object-
oriented internal structure (see Fig. 1) is intentionally implemented to the outside as a function
interface. This has the advantage that it is language-independent.

The library has self-administration which frees an application program from having to buffer any
values, settings or other information. The driver manager in FEUSB keeps a list with all opened
channels (created device objects) and each device object administers all relevant settings for its
channel within its local memory. Exactly one opened channel is always connected between a
device object and a certain OBID® USB device, and only the devices registered with its serial
number can be accessed through this channel. A channel to an OBID® USB device can only be
opened once.

FEUSB.DLL Operating System
- @ L
- i
+7 | Device-Object ~— USB Channel
[FEUSB_GetDLLVersmn Driver-Manager o PR :
- Serialnumber
[FEUSB_GetErrarText L N - Farametets P
- Lust of DeviceHandles B Tl
FELISB_Sean ' g‘]’j‘_‘t";mdl“N . EsE
' P Device-Object
[FEUSE_ScanAndOpen T e
= - Senalnumber
[FEUSB_GetSeanListPara o [USB-Driver
[FEusa_setScanListSize for Interface A
{FEusa_mearScanList
. . USB
FEUSB_AddEventHandler
L)
FEUSE_DelEventHandler
USB-Driver
L] for Interface B
[FEUSE_OpenDeuice
[FEuss_closeDevice
[FEusa_setDevieeList
[FEUSB_GetDeviceHnd Device-Object
- - DeviceHandle ™
[FEUSB_GetDewcePar'a B i
- Parameters
[FELISE_SetDevi cePara
{FEUSB_Tr'ans:eive

Fig. 1: Internal structure of FEUSB.DLL

The first step in establishing a connection with an OBID® USB device is to detect (scan procedure)
one or all OBID® USB devices on the USB of the PC. Each found device is entered in the internal
scan list but not opened.

FEIG ELECTRONIC GmbH Page 20 (of 52) HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

Before the first communication a USB device must be selected from the scan list and the function
FEUSB_OpenDevice used to open a channel to this device. If this function has been executed
without error, you get a handle back with the return value which can be administered by the
application program. Unique identification of the opened channel is possible only with this handle.
The handle(s) does/do not however need to be stored in the application program, since the driver
manager internally administers a list of all opened channels. This list can be invoked using the
function FEUSB_GetDevicelList.

A channel which has been opened with FEUSB_OpenDevice must always be closed using the
function FEUSB_CloseDevice.

Every library function (exception: FEUSB_GetDLLVersion) has a return value which is always
negative in case of error.

If an application program is opened multiple times, each program (instance) gets an empty device
list with the function invoke FEUSB_GetDeviceList. This prevents mixing up of access rights under
different program instances. Please note that in contrast to a serial interface, a USB channel can
be opened again by any program or another instance! This means that different programs can
exchange data quasi-simultaneously with one and the same USB device. The resulting possible
access conflicts are not caught by the FEUSB.

6.2. Thread security

In principle, all FEIG libraries are not fully thread safe. But respecting some guidance, a practical
thread security can be realized allowing parallel execution of communication tasks. One should
keep in mind, that all OBID® RFID-Reader works synchronously and can perform commands only
in succession.

On the level of the transport layer (FECOM, FEUSB, FETCP) the communication with each port
must be synchronized in the application, as the Reader works synchronously. Using multiple ports
and so multiple Readers from different threads simultaneously is possible, as the internal port
objects acts independently from each other.

FEIG ELECTRONIC GmbH Page 21 (of 52) HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

6.3. Structure and function of the scan list

Opening a channel to an OBID® USB device is possible only with its individual serial number
(Device ID). Before opening, a scan procedure must be used (with FEUSB_Scan or
FEUSB_ScanAndOpen) to detect one (or more) OBID® USB devices on the USB port and the
serial number(s) read out. The located USB devices are entered in the internal scan list and there
administered according to their serial number. After opening (with FEUSB_ScanAndOpen or
FEUSB_OpenDevice), the device handle of the channel is added to the scan list. In addition, a
note is made that the USB device is ready.

The structure of the internal scan list contains the following data elements:

int iScanNo; // Index in scan list (>=0)
DWORD dwDevicelD; /I Serial number (>0)
int iDeviceHnd,; /I Device-Handle (0: channel not opened; >0: channel opened)

char cFamilyName[25]; // Name of device family (e.g. "OBID i-scan Proximity")
char cDeviceName[25]; // Device-Name (e.g. "ID ISC.PRH100-U")
bool bPresent; I/ Ready flag (true or false)

Each data element in the scan list can be read using the function FEUSB_GetScanListPara.

An essential data element is the ready flag bPresent, which indicates whether the device is still
connected to the USB port after opening the channel. If you remove a USB device after a channel
to it has been opened, the ready flag is set internally to false. The channel however remains
opened. If the same device is then re-connected, the ready flag is set back to true and
communication can immediately resume.

There are three ways to determine the readiness of a USB device:

e Query the ready flag with FEUSB_GetScanListPara(ilndex, ,PRESENT", cValue)
o Query readiness with FEUSB_IsDevicePresent(iDevHnd)

e Establish an event signalling scheme (see Section 6.4. Event signalling)

The scan list can be cleared at any time using the function FEUSB_ClearScanList. Any opened
channels are not closed! The two scan functions can be used to then reconstruct the scan list at
any time. Channels kept open are detected and the ready flags are correspondingly set. This
means that clearing the scan list does not permanently lose important information.

You should not however use the scan list to close opened channels, since for the reasons
indicated above it does not actively administer each open channel. It is better to always use the
device list, which can be read out cyclically using the function FEUSB_GetDevicelList.

FEIG ELECTRONIC GmbH Page 22 (of 52) HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

6.4. Event signalling

For the Plug&Play events® Connect and Disconnect, event handling procedures can be installed
individually for each event and regardless of whether the device is already listed in the internal
scan list. As soon as a USB device is plugged in or unplugged, the corresponding signalling is
performed. In this way you can inform an application of the event asynchronous to the program
sequence.

An event handling procedure must be installed using the function FEUSB_AddEventHandler. You
can select from among three signaling methods: Message to invoking process, message to a
window or use of a callback function.

An installed event handling procedure must be deleted only using the function
FEUSB_DelEventHandler.

The structure FEUSB_EVENT _INIT contains the parameters necessary for signalling:

typedef struct _FEUSB_EVENT_INIT
{
UINT uiFlag; // Specifies use of the union (z.B. FEUSB_WND_HWND)
UINT uiUse; /I Defines the event (e.g. FEUSB_CONNECT_EVENT)
UINT uiMsg; // Message code for dwThreadlD and hwndWnd (e.g. WM_USER_xyz)
union

{
DWORD dwThreadID; /I for Thread-I1D
HWND hwndWnd; /I for Window handle
void (*cbFct)(int, DWORD); /I for Callback function
} Method?;

} FEUSB_EVENT_INIT;

The core element in this structure is the union, which contains either the ID of a process, the
handle of a window or a function pointer. The signalling form is selected using the parameter
uiFlag. The uiUse parameter is where you store the ID of the event to which you want to assign
the handling method. You must store the message code for the message methods in uiMsg.

You may install multiple event handling methods for an event. However, each dwThreadID,
hwndwWnd or cbFct may only be used once per event.

Annotation to Linux: The connect signaling for OBID® USB devices with additional HID interface
takes about 10..12 seconds.

! The event signaling can be generally disabled. See 3.5. Deactivating the Plug-and-play Thread.

2 Naming of the union using method is only for C programmers. C++ programmers access the union directly
through the structure.

FEIG ELECTRONIC GmbH Page 23 (of 52) HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

6.5. Function list!

e void FEUSB_GetDLLVersion(char* cVersion)
e int FEUSB_GetErrorText(int iError, char* cText)
e int FEUSB_GetLastError(intiDevHnd , int* iErrorCode, char* cErrorText)

e int FEUSB_Scan(intiScanOpt, FEUSB_SCANSEARCH* pSearchOpt)

e int FEUSB_ScanAndOpen(intiScanOpt, FEUSB_SCANSEARCH?* pSearchOpt)
e int FEUSB_GetScanListPara(int ilndex, char* cPara, char* cValue)

e int FEUSB_GetScanListSize()

e int FEUSB_ClearScanList()

e int FEUSB_AddEventHandler(int iDevHnd, FEUSB_EVENT_INIT* plnit)
e int FEUSB_DelEventHandler(int iDevHnd, FEUSB_EVENT_INIT* plnit)

e int FEUSB_OpenDevice(long nDevicelD)

e int FEUSB_CloseDevice(intiDevHnd)

e int FEUSB_GetDeviceList(int iNext)

e int FEUSB_GetDeviceHnd(long nDevicelD)

e int FEUSB_GetDevicePara(int iDevHnd, char* cPara, char* cValue)

e int FEUSB_SetDevicePara (int iDevHnd, char* cPara, char* cValue)

e int FEUSB_Transceive(int iDevHnd, char* cinterface, int iDir, UCHAR* cSendData, int iSendLen, UCHAR*
cRecData, int iRecLen)

e int FEUSB_Transmit(int iDevHnd, char* cinterface, UCHAR* cSendData, int iSendLen)

e int FEUSB_Receive(int iDevHnd, char* cinterface, UCHAR* cRecData, int iRecLen)

! Note: UCHAR is defined as an 8-bit unsigned char. In Visual Basic the compatible data type is the byte.

FEIG ELECTRONIC GmbH Page 24 (of 52) HO00501-17e-ID-B.doc

OBID®

Manual ID FEUSB V4.02.04

6.6. Function descriptions

6.6.1. FEUSB_GetDLLVersion

Function Gets the version number of the DLL
Syntax void FEUSB_GetDLLVersion(char* cVersion)
Description The function returns the version number of the DLL.

cVersion is an empty, null-terminated character string for returning the version number.
The string should be able to hold at least 256 characters.

The string is filled with the current version number (e.g. "04.02.04“). Newer versions
could however provide additional information.

Return value

None

Example

#include "feusb.h"

char cVersion[256];
FEUSB_GetDLLVersion(cVersion)
/I Code here for displaying the version number

6.6.2. FEUSB_GetDrvVersion (only for Windows)

Function Gets version information from installed kernel-driver
Syntax int FEUSB_GetDrvVersion(char* cVersion)
Description The function returns version information from the installed kernel-driver.

ATTENTION: this function returns the information only if the kernel-driver is load. This is
the case when a channel to the USB-Reader is open.

cVersion is an empty, null-terminated character string for returning the version
information. The string should be able to hold at least 256 characters.

Return value

In case of error the function returns <0, otherwise 0. The list of error codes can be found
in the appendix.

Example

#include "feusbh.h"

char cVersion[256];
if(0 == FEUSB_GetDrvVersion(cVersion))
/I Code here for displaying the version information

FEIG ELECTRONIC GmbH Page 25 (of 52) HO00501-17e-ID-B.doc

OBID®

Manual ID FEUSB V4.02.04

6.6.3. FEUSB_GetErrorText

Function Returns error text
Syntax int FEUSB_GetErrorText(int iError, char* cText)
Description The function returns an error text" for the error code.

iError is the error code (always negative).

cText is an empty, null-terminated string for returning the error text. The string should be
able to hold at least 256 characters.

Return value

In case of error the function returns the code
FEUSB_ERR_UNKNOWN_ERRORCODE, otherwise 0. The list of error codes can be
found in the appendix.

Example

#include "feusb.h"

char cText[256];
int iErr = FEUSB_GetErrorText(-1100, cText)
/I Code here for displaying the error text

6.6.4. FEUSB_GetLastError

Function Gets the last error code and transfers error text
Syntax int FEUSB_GetLastError(int iDevHnd , int* iErrorCode, char* cErrorText)
Description The function uses iErrorCode to transfer the last error code of the USB channel selected

with iDevHNd and transfers the associated English error text in cErrorText

Return value

In case of no error, returns the function zero and in case of error a value less than zero.
The list of error codes can be found in the appendix.

Example #include "feusb.h”
char cErrorText[256];
int iErrorCode = 0;
int iBack = FEUSB_GetLastError(iDevHnd, &iErrorCode, cErrorText)
/I Code here for displaying the Text
1. .
in English

FEIG ELECTRONIC GmbH Page 26 (of 52) HO00501-17e-ID-B.doc

OBID®

Manual ID FEUSB V4.02.04

6.6.5. FEUSB_Scan

Function Detecting a single or all USB devices
Syntax int FEUSB_Scan(int iScanOpt, FEUSB_SCANSEARCH?* pSearchOpt)
Description With this function the USB port is searched for devices with the FEIG identifier, and

each found device is entered in the internal scan list. The parameter iScanOpt allows
searching for one or all devices, or allows no longer existing devices to be deleted from
the scan list. The index of the scan list is null-based. The parameter pSearch Opt is
used for targeted searching with the option FEUSB_SCAN_SEARCH. If this option is not
used, NULL must be passed in C/C++. In Visual Basic you pass the constant
vbNullString.

The parameter iScanOpt controls the scan procedure and is comprised of iScanOpt =
[CommandID] | [OptionID] | [OptionID].

CommandIDs:

e FEUSB_SCAN_FIRST searches for the device that was the first one to be
registered by the operating system. The internal scan counter is thus set to 0. The
scan list is cleared before the scanning process.

e FEUSB_SCAN_NEXT searches for the device that was next registered by the
operating system. For this the internal scan counter is used, which is incremented
with each successful FEUSB_SCAN_ NEXT (up to max. 127). Note: each
FEUSB_SCAN_FIRST resets the internal scan counter to 0!

e FEUSB_SCAN_NEW searches for a new device which is not yet entered in the scan
list. Te internal counter is correspondingly set anew.

e FEUSB_SCAN_ALL allows searching for all devices on the USB port. The scan
counter is correspondingly set anew. The scan list is first cleared and then
reconstructed. You cannot therefore assume that a device previously entered in the
scan list will be listed with the same index.

e FEUSB_SCAN_PACK deletes all devices from the internal scan list which are no
longer found on the USB port.

OptionIDs:

e FEUSB_SCAN_SEARCH searches for a specific device on the USB port. You enter
the search options in the parameter pSearchOpt'. This OptionlD must always be
linked to a CommandiID.

e FEUSB_SCAN_PACK deletes all devices from the internal scan list which are no

! see appendix 8.4. List of constants for the FEUSB _SCANSEARCH, 8.5. List of cFamilyName in the
FEUSB SCANSEARCH structure und 8.6. List of cDeviceName in the FEUSB_SCANSEARCH structure

FEIG ELECTRONIC GmbH Page 27 (of 52) HO00501-17e-ID-B.doc

OBID®

Manual ID FEUSB V4.02.04

longer found on the USB port. The option is only used if the previous (optional) scan
was without error. Caution: this option changes the list index for the already entered
devices! This option can be combined with all others. But for the CommandID
FEUSB_SCAN_ALL this is superfluous, since this automatically reconstructs the
scan list.

Note

Clearing the scan list with FEUSB_ClearScanList does not (!) close the objects opened
with FEUSB_OpenDevice.

Return value

If one or more USB devices were found, the return value contains with option
FEUSB_SCAN_FIRST, FEUSB_SCAN_NEXT or FEUSB_SCAN_NEW the index of the
device in the scan list or O with the option FEUSB_SCAN_ALL.

In case of error the function returns a value less than null. Even when an error has
occurred some devices can be detected and added to the scan list. After a scan using
option FEUSB_SCAN_ALL you should therefore always use FEUSB_ScanListSize to
check the size of the scan list.

The list of error codes can be found in the appendix.

Scan Options

FEUSB_SCAN_FIRST 0x00000001
FEUSB_SCAN_NEXT 0x00000002
FEUSB_SCAN_NEW 0x00000003
FEUSB_SCAN_ALL 0x0000000F
FEUSB_SCAN_SEARCH 0x00010000
FEUSB_SCAN_PACK 0x00020000

Search Options

FEUSB_SEARCH_FAMILY 0x00000001
FEUSB_SEARCH_PRODUCT 0x00000002
FEUSB_SEARCH_DEVICEID 0x00000004

Example

#include "feusb.h"

char cDevicelD[16];
long nDevicelD;
FEUSB_SCANSEARCH search;

/I Set search options
search.iMask = FEUSB_SEARCH_PRODUCT;
strcpy(search.cDeviceName, "ID ISC.MR101-U");

if(FEUSB_Scan(FEUSB_SCAN_FIRST, &search) == 0)

if(FEUSB_GetScanListPara(0, "Device-ID", cDevicelD) ==0)
{

sscanf((const char*)cDevicelD, "%Ix", &nDevicelD);
int iDevHnd = FEUSB_OpenDevice(nDevicelD);
if(iDevHnd < 0)

/I Code here for error
}

else

/I Code here for communication or other

FEIG ELECTRONIC GmbH Page 28 (of 52) HO00501-17e-ID-B.doc

OBID®

Manual ID FEUSB V4.02.04

6.6.6. FEUSB_ScanAndOpen

Function Detecting a single or all USB devices and then opening the channels
Syntax int FEUSB_ScanAndOpen(int iScanOpt, FEUSB_SCANSEARCH?* pSearchOpt)
Description This function combines the functions FEUSB_Scan and FEUSB_OpenDevice.

This function is useful for directly opening a channel to a device in the frequently
occurring case where exactly one OBID® device is found on the USB port.

The description of the parameters can be found in the sections for the functions in
guestion.

Return value

If one or more channels to USB devices could be opened without error, the return value
contains with option FEUSB_SCAN_FIRST, FEUSB_SCAN_NEXT or
FEUSB_SCAN_NEW the device handle or 0 with the option FEUSB_SCAN_ALL. In the
last case the device handles of the opened USB channels must be queried with the
function FEUSB_GetScanListPara.

In case of error the function returns a value less than null. Even when an error has
occurred some devices can be detected and the channel opened. After a ScanAndOpen
call using option FEUSB _SCAN_ALL vyou should therefore always use
FEUSB_GetScanListSize to check the size of the scan list.

If the channel to the USB device was able to be opened without error, a handle (>0) is
returned. In case of error the function returns a value less than zero. The list of error
codes can be found in the appendix.

Cross- 6.5.4. FEUSB_GetLastError, 6.5.10. FEUSB_OpenDevice
references
Example see examples for FEUSB_Scan and FEUSB_GetScanL.istSize

FEIG ELECTRONIC GmbH Page 29 (of 52) HO00501-17e-ID-B.doc

OBID®

Manual ID FEUSB V4.02.04

6.6.7. FEUSB_GetScanListPara

Function Reads a value from the scan list
Syntax int FEUSB_GetScanListPara(int ilndex, char* cPara, char* cValue)
Description This function gives you access to the values in the scan list. Each record contains

several values for the found OBID® device. Access is gained using the null-based index
ilndex.

In the parameter cPara you indicate the identifier for the corresponding scan list value
(see Parameter Field).

cValue is an empty, null-terminated string for returning the scan list value. The string
should be able to hold at least 25 characters.

Return value

In case of error the function returns a value less than zero. The list of error codes can be
found in the appendix.

Parameter

The parameter identifiers are:

.Device-ID" - Serial number of the USB device in hexadecimal representation
,DeviceHnd"“ - Device handle for the USB channel

.FamilyName" - Name of the device family for the device on the USB channel
,DeviceName" - Name of the device on the USB channel

.Present” - USB device is connected (cValue=,1") or disconnected (cValue=,0")

Note

The Device-ID obtained represents a hex value. For example, "6D89573" is associated
with Device-ID 0x06D89573 or 114857331.

The following example shows how to convert the string:

cDevicelD[16];
long nDevicelD = 0;

if(FEUSB_GetScanListPara(index, "Device-ID", cDevicelD) == 0)

{
sscanf((const char*)cDevicelD, "%lx", &nDevicelD);
iDeviceHnd = FEUSB_OpenDevice(nDevicelD);

Example

see examples for FEUSB_Scan and FEUSB_GetScanL.istSize

FEIG ELECTRONIC GmbH Page 30 (of 52) HO00501-17e-ID-B.doc

OBID®

Manual ID FEUSB V4.02.04

6.6.8. FEUSB_GetScanListSize

Function Gets the size of the scan list
Syntax int FEUSB_GetScanListSize()
Description This function is used to obtain the number of data records in the scan list.

Return value

In case of error the function returns a value less than zero. The list of error codes can be
found in the appendix.

Example

#include "feusb.h"

int iDevHNd;
char cDevicelD[16];
long nDevicelD;

FEUSB_Scan(FEUSB_SCAN_ALL, NULL);
for(int iCnt=0; iCnt = FEUSB_GetScanListSize(); iCnt++)

if(FEUSB_GetScanListPara(iCnt, "Device-1D", cDevicelD) == 0)
{

sscanf((const char*)cDevicelD, "%lIx", &nDevicelD);
iDevHnd = FEUSB_OpenDevice(nDevicelD);
if(iDevHnd <0)

/I Code here for error
}

else

/I Code here for communication or other

6.6.9. FEUSB_ClearScanList

Function Clears the scan list
Syntax int FEUSB_ClearScanList()
Description This function clears the scan list. Already opened device objects are not automatically

closed by this function. This means it is possible to perform a new scan to restore the
scan list.

Return value

In case of error the function returns a value less than zero. The list of error codes can be
found in the appendix.

Example

FEIG ELECTRONIC GmbH Page 31 (of 52) HO00501-17e-ID-B.doc

OBID®

Manual ID FEUSB V4.02.04

6.6.10. FEUSB_OpenDevice

Function Opens a channel for communication with an OBID®-Reader.
Syntax int FEUSB_OpenDevice(long nDevicelD)
Description The function opens a USB channel and internally creates a device object for

administering the channel parameters. The returned handle iDevHnd identifies the
channel from the outside.

nDevicelD is the serial number of the OBID®-device on the USB channel you are
opening.

The function invoke is ended with an error if the serial number was not found in the scan
list.

After successful opening, the device handle is also stored in the scan list and the ready
flag set. Thus simply reading out the scan list allows you to determine which devices
were found, are open and ready.

The USB channel opened with FEUSB_OpenDevice must (!) be closed using the
function FEUSB_CloseDevice. Otherwise the memory reserved by the DLL is not freed
up again.

Repeated invoking of this function with the same serial number does not result in
repeated opening of channels, rather the associated handle is returned.

Return value

If the channel to the USB device could be opened without error, a handle (>0) is
returned. In case of error the function returns a value less than zero. The list of error
codes can be found in the appendix.

Example

see examples for FEUSB_Scan and FEUSB_GetScanL.istSize

FEIG ELECTRONIC GmbH Page 32 (of 52) HO00501-17e-ID-B.doc

OBID®

Manual ID FEUSB V4.02.04

6.6.11. FEUSB_CloseDevice

Function Closes a USB channel to an OBID®-device
Syntax int FEUSB_CloseDevice(int iDevHnd)
Description The function closes the USB channel specified by the parameter iDevHnd and frees up

the reserved memory.

Return value

The return value is 0 if the channel was closed. In case of error the function returns a
value less than zero. The list of error codes can be found in the appendix.

Example

#include "feusb.h"

char cDevicelD[16];
long nDevicelD;

if(FEUSB_Scan(FEUSB_SCAN_FIRST, NULL) ==0)

if(FEUSB_GetScanListPara(0, "Device-ID", cDevicelD) ==0)
{

sscanf((const char*)cDevicelD, "%Ix", &nDevicelD);
int iDevHnd = FEUSB_OpenDevice(nDevicelD);
if(iDevHnd <0)

/I Code here for error

}

else

{

}
}

int iErr = FEUSB_CloseDevice(iDevHnd);

}

6.6.12. FEUSB_IsDevicePresent

Function Checks for the presence of a USB device
Syntax int FEUSB_IsDevicePresent(int iDevHNnd)
Description The function checks for the presence of the USB device on the USB channel specified

by the parameter iDevHnd.

Return value

The return value is 1 if the USB device is ready for communication, otherwise 0. In case
of error the function returns a value less than zero. The list of error codes can be found
in the appendix.

Example

FEIG ELECTRONIC GmbH Page 33 (of 52) HO00501-17e-ID-B.doc

OBID®

Manual ID FEUSB V4.02.04

6.6.13. FEUSB_GetDeviceList

Function Uses the parameter iNext to get the first or following device handle from the internal list
of the opened serial interfaces.

Syntax int FEUSB_GetDeviceList(int iNext)

Description The function returns a device handle from the internal list of device handles. If you pass

a 0 for iNext, the first entry in the list is returned. If you use iNext to pass a device handle
kept in the list, the entry following the device handle is obtained and returned. In this way
you can successively use the return value to go through the list from front to back and
open all entries.

Return value

Once an entry is found, the return value is used to provide the device handle. When the
end of the internal list is reached, i.e., the passed device handle has no successor, a 0
is returned. If no USB channel is open, FEUSB_ERR_EMPTY_DEVLIST is returned.

In case of error the function returns a value less than zero. The list of error codes can be
found in the appendix.

Example

#include "feusb.h"

/I gets the DevicelDs for all open USB channels
char cValue[16];

int iNextHnd = FEUSB_GetDeviceList(0); // get the first handle
while(iNextHnd > 0)
{ /I read out DevicelD here
int iBack = FEUSB_GetDevicePara(iNextHnd, “Device-1D“, cValue)
printf(,,%s", cValue); /I print to screen
iNextHnd = FEUSB_GetDeviceList(iNextHnd); // get next handle

}

Tip

When closing all open USB channels, it is advantageous to use a loop similar to the
above example. Simply bear in mind that you cannot get a successor from a closed
channel. In the following code fragment you can see how to close all open channels in a
loop:

int iCloseHnd, iNextHnd;

iNextHnd = FEUSB_GetDeviceList(0); // get first handle
while(iNextHnd > 0)

iCloseHnd = iNextHnd,;

iNextHnd = FEUSB_GetDeviceList(iNextHnd); // get next handle only

FEUSB_CloseDevice(iCloseHnd); /I only now close USB channel to the device
}

FEIG ELECTRONIC GmbH Page 34 (of 52) HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

6.6.14. FEUSB_GetDeviceHnd

Function Gets the device handle from an open USB channel

Syntax int FEUSB_GetDeviceHnd(long nDevicelD)

Description This function provides an easy way to get the device handle of a previously opened USB
channel.

dwDevicelD is the serial number of the USB device.

This function is a “reverse function” of FEUSB_GetDevicePara (iDevHnd, "Device-ID",
cValue), which gets the serial number of the device on the USB channel for the device
handle.

Return value If the channel for the passed serial number was found, the device handle (>0) is
returned. If the desired serial number was not found in the device list, a 0 is returned. In
case of error the function returns a value less than zero. The list of error codes can be
found in the appendix.

Example #include "feusb.h"

int iDevHnd = FEUSB_OpenDevice(nDevice);
if(iDevHnd < 0)

/I Code here for error
}
else
{ /Ihandle is obtained again using DevicelD
iDevHnd = FEUSB_GetDeviceHnd(nDevice);
}

FEIG ELECTRONIC GmbH Page 35 (of 52) HO00501-17e-ID-B.doc

OBID®

Manual ID FEUSB V4.02.04

6.6.15. FEUSB_GetDevicePara

Function Gets a parameter from the USB channel specified by iDevHnd.

Syntax int FEUSB_GetDevicePara(int iDevHnd, char* cPara, char* cValue)

Description The function gets the current value of a parameter.
cPara is a null-terminated character string with the parameter identifier.
cValue is an empty, null-terminated string for returning the parameter value. The string
should be able to hold at least 128 characters.

Parameter The parameter identifiers are:

identifiers

"Device-ID" - Serial number of the USB device in hexadecimal representation
"FamilyName“ - Name of the device family of the device on the USB channel
"DeviceName"* - Name of the device on the USB channel

This data is not case-sensitive.

Return value

If there is no error, the function returns the value 0 and in case of error a value less than
zero. The list of error codes can be found in the appendix.

Cross-reference

For additional information, see: 8.2. List of parameter identifiers.

Example

#include "feusb.h"

char cValue[128];

long nDevicelD;

if(FEUSB_GetDevicePara(iDevHnd, "Device-ID", cValue) ==0)
/I code here for displaying the parameter

/1 or conversion into DWORD
sscanf((const char*)cValue, "%Ix", &nDevicelD);

}

FEIG ELECTRONIC GmbH Page 36 (of 52) HO00501-17e-ID-B.doc

OBID®

Manual

ID FEUSB V4.02.04

6.6.16. FEUSB_SetDevicePara

Function Sets a parameter for a USB channel to a new value.
Syntax int FEUSB_SetDevicePara(int iDevHnd, char* cPara, char* cValue)
Description The function passes a new parameter to the USB channel specified by iDevHnd.

cPara is a null-terminated character string with the parameter identifier.

cValue is a null-terminated character string with the new parameter value.

(only for Windows)

Parameter identifier Value Default Unit | Comment
range value

TIMEOUT 0...99999 |1000 ms This parameter can only be
set for opened USB
channels. If this setting
should have an affect to all
opened USB channels, the
iDevHnd must be zero.

EXCLUSIVEACCESS (0,1 1 - Activates (1) or deactivates

(0) the exclusive access. This
setting is global for all USB
reader. Thus, iDevHnd must
be set to 0.

Return value

If the USB channel with the new parameter value was able to be successfully initialized,
a 0 is returned. In case of error the function returns a value less than zero. The list of
error codes can be found in the appendix.

Cross-reference | For additional information, see: 8.2. List of parameter identifiers.

Example

FEIG ELECTRONIC GmbH

Page 37 (of 52)

HO00501-17e-ID-B.doc

OBID®

Manual ID FEUSB V4.02.04

6.6.17. FEUSB_AddEventHandler

Function Installs an event handler
Syntax int FEUSB_AddEventHandler(int iDevHnd, FEUSB_EVENT _INIT* plnit)
Description The function installs one of three possible types of event handlers. This method is used when

an event occurs for which the method was installed. In this way you can achieve asynchronous
response to an event in an application program.

The event handling mechanism is set up for the channel identified by iDevHnd or globally
(iDevHNd = 0).

At the present time only global even handling methods can be installed.

Event Description
FEUSB_CONNECT_EVENT Signals when the device is plugged in
FEUSB_DISCONNECT_EVENT Signals when the device is removed

Method 1: Message to thread (only for Windows; not for Visual Basic)
This method is used for exchanging messages between threads®. The thread uses the API
function GetCurrentThreadlD() to get the thread identifier and passes it as parameter
dwThreadID in the FEUSB_EVENT _INIT structure.
To receive the message that was sent by FEUSB with the API function PostThreadMessage(..),
the thread must provide a message handling function. The message code is freely selectable.
The FEUSB_EVENT _INIT structure is filled as follows:

uiFlag = FEUSB_THREAD_ID

uiUse = FEUSB_xyz_EVENT /I see Defines FEUSB.H

uiMsg = WM_USER + ... I/ freely selectable, but higher than WM_USER?

dwThreadlD = GetCurrentThreadlD()

The MessageMap function in the application gets the following parameters:

Event Channel 1 Parameter (wParam) 2" parameter (IParam)
Connect Not opened 0 DevicelD
Opened DeviceHnd DevicelD
Disconnect Not opened 0 0
opened DeviceHnd DevicelD

! parallel execution path independent of the application program. The application program itself is a thread.
% See Windows documentation for SDK platform

FEIG ELECTRONIC GmbH Page 38 (of 52) HO00501-17e-ID-B.doc

OBID®

Manual ID FEUSB V4.02.04

Method 2: Message to window (only for Windows; not for Visual Basic)

This method is used when you want to send the message directly to a window. The API function
GetWindow(..)l is used to get the handle from the window in question and pass it as parameter
hwndWnd in the FEUSB_EVENT _INIT structure. To receive the message that was sent by
FEUSB with the API function stThreadMessage(..), the thread must provide a message
handling function. The message code is freely selectable.
The FEUSB_EVENT _INIT structure is filled as follows:

uiFlag = FEUSB_WND_HWND

uiUse = FEUSB_xyz_EVENT /I see Defines FEUSB.H

uiMsg =WM_USER + ... Il freely selectable, but higher than WM_USER?

hwndWnd = GetWindow(...)
The MessageMap function gets the same parameters as for the first method.

Method 3: Invoking a callback function

The callback method is used to install a function pointer for an event. When the event occurs,
the function is opened by FEUSB. The contents of the function can be freely determined. The
passing parameters are specified according to Method 1.
The FEUSB_EVENT _INIT structure is filled as follows:

uiFlag = FEUSB_CALLBACK

uiUse = FEUSB_xyz_EVENT /I see Defines FEUSB.H

uiMsg is not needed

chFct = (void*)&YourFunctionName®

The callback function gets the same parameters as for the first method.
An installed event handler must be deleted using the function FEUSB_DelEventHandler.

When a USB channel is closed, all the event handlers installed for it are lost.

Cross-reference

For additional information, see: 6.4. Event signalling

Return value

If there is no error the function returns zero, and in case of error a value less than zero. The list
of error codes can be found in the appendix.

Example

#include "feusb.h"

/I Set up message handler for events
FEUSB_EVENT_INIT Init;

Init.hwndWnd = this->GetSafeHwnd();

Init.uiFlag = FEUSB_WND_HWND;

Init.uiUse =FEUSB_DEV_DISCONNECT_EVENT;// Message always when a device is disconnected
InituiMsg =WM_USER_DEVICE_DISCONNECT;

FEUSB_AddEventHandler(0, &Init);

Init.uiUse =FEUSB_DEV_CONNECT_EVENT; /I Message always when a device is connected
Init.uiMsg =WM_USER_DEVICE_CONNECT;
FEUSB_AddEventHandler(0, &Init);

' When using the MFC class CWnd, the GetSafeHwnd() can also be used
% See Windows documentation for SDK platform
® The function has the prototype: void YourFunctionName(int, unsigned int)

FEIG ELECTRONIC GmbH Page 39 (of 52) HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

6.6.18. FEUSB_DelEventHandler

Function Deletes an event handler
Syntax int FEUSB_DelEventHandler(int iPortHnd, FEUSB_EVENT _INIT* plnit)
Description The function deletes an event handler previously installed using

FEUSB_AddEventHandler. In the FEUSB_EVENT_INIT structure you specify the
event handler to be deleted in detail.

Deleting Method 1: Message to thread (only for Windows; not for Visual Basic)
The FEUSB_EVENT _INIT structure is filled as follows:

uiFlag = FEUSB_THREAD_ID

uiUse = FEUSB_xyz_EVENT /I see Defines in FEUSB.H

uiMsg is not needed

dwThreadlD = GetCurrentThreadlD()

Deleting Method 2: Message to window (only for Windows; not for Visual Basic)
The FEUSB_EVENT _INIT structure is filled as follows:

uiFlag = FEUSB_WND_HWND

uiUse = FEUSB_xyz_EVENT /I see Defines in FEUSB.H

uiMsg is not needed

hwndwWnd = GetWindow(...)

Deleting Method 3: Invoking a callback function

The FEUSB_EVENT _INIT structure is filled as follows:
uiFlag = FEUSB_CALLBACK
uiUse = FEUSB_xyz_EVENT /I see Defines FEUSB.H
uiMsg is not needed
chFct = (void*)&YourFunctionName?!

Cross-reference | For additional information, see: 6.4. Event signalling

Return value If there is no error the function returns zero, and in case of error a value less than zero.
The list of error codes can be found in the appendix.

Example #include “feush.h"

/I Delete message handler for events
FEUSB_EVENT_INIT Init;

Init.hwndWnd = this->GetSafeHwnd();

Init.uiFlag = FEUSB_WND_HWND;

Init.uiUse = FEUSB_DEV_DISCONNECT_EVENT;
Init.uiMsg =0;

FEUSB_DelEventHandler(0, &Init);

Init.uiUse =FEUSB_DEV_CONNECT_EVENT;
Init.uiMsg =0;
FEUSB_DelEventHandler(0, &Init);

! The function has the prototype: void YourFunctionName(int, unsigned int)

FEIG ELECTRONIC GmbH Page 40 (of 52) HO00501-17e-ID-B.doc

OBID®

Manual ID FEUSB V4.02.04

6.6.19. FEUSB_Transceive

Function Function for communication (transmit and receive) on a USB channel

Syntax int FEUSB_Transceive(int iDevHnd, char* cinterface, int iDir, UCHAR* cSendData,
int iSendLen, UCHAR* cRecData, int iRecLen)

Description The function sends the data contained in cSendData with length iSendLen over the
device interface named in cinterface for the connected device. The received data are
stored in cRecData. You must specify the maximum length of the buffer cRecData using
the parameter iRecLen. If the number of received characters exceeds the value passed
in iRecLen, the function is ended with an error.

This function supports two Interfaces:

e cinterface = “OBID-RCI": USB protocol for the first OBID i-scan® USB Reader (ID
ISC.PRH100-U and ID ISC.MR100-U). Of cause its complexity, the handling of the
protocol exchange is undocumented. The communication with the reader is only
possible with the function library ID FEISC.

This interface is not supported by Linux.

The parameter iDir determines the data direction:

iDir = 0x01 IN-Transfer (host gets data from the device)
iDir =0x02 OUT-Transfer (host sends data to the device)

o cinterface = "OBID-RCI2": USB protocol of second generation for OBID i-scan®
USB Reader. The protocol layout is identical with the protocol frame as it is
documented in the system manual of the reader.

The parameter iDir has no function and can be set to zero.
Interfaces OBID-RCI, OBID-RCI2

Return value

If there are no errors, the function returns the length of the receive protocol, and in case
of error a value less than zero. The list of error codes can be found in the appendix.

Example

FEIG ELECTRONIC GmbH Page 41 (of 52) HO00501-17e-ID-B.doc

OBID®

Manual ID FEUSB V4.02.04

6.6.20. FEUSB_Transmit

Function Function for communication on a USB channel

Syntax int FEUSB_Transmit(int iDevHnd, char* cinterface, UCHAR* cSendData, int
iSendLen)

Description The function sends the data contained in cSendData with length iSendLen over the
device interface named in cinterface for the connected device.
Only cInterface = “OBID-RCI2" is supported.

Interfaces OBID-RCI2

Return value

If there are no errors, the function returns zero. The list of error codes can be found in
the appendix.

Example

6.6.21. FEUSB_Receive

Function Function for communication on a USB channel

Syntax int FEUSB_Receive(int iDevHnd, char* cinterface, UCHAR* cRecData, int iRecLen
)

Description The function expects data over the device interface named in cinterface for the
connected device. The received data are stored in cRecData. You must specify the
maximum length of the buffer cRecData using the parameter iRecLen. If the number of
received characters exceeds the value passed in iRecLen, the function is ended with an
error.

Only cInterface = “OBID-RCI2" is supported.

Interfaces OBID-RCI2

Return value

If there are no errors, the function returns the length of the receive protocol, and in case
of error a value less than zero. The list of error codes can be found in the appendix.

Example

FEIG ELECTRONIC GmbH Page 42 (of 52) HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

7. Dynamic linking under C++

If you want to link the FEUSB function collection dynamically to the application the library file must
be loaded explicitely. A (program-related) disadvantage is that each function invoke to the DLL
must then be done using a function pointer.

You will need to perform the following steps:

1. Load the DLL for run-time library
HMODULE hLib = LoadLibrary(*"feusb.dll');

2. Get a function pointer for run-time:
LPFN_FEUSB_GET_DLL_VERSION Ipfn= GetProcAddress(hLib,
"FECOM_GetDLLVersion™);

3. Run the functions:
char cVersion[256];
Ipfn(cVersion);
4. The loaded DLL must be freed again before quitting the application:
if(hLib 1= NULL)
FreeLibrary(hLib);

A prototype for a function point is defined for each function in the FEUSB in the header file
feusb.h. In the example above this is LPFN_FEUSB_GET_DLL_VERSION. A practical approach is
to get and save the required function pointer for the entire run-time of the program.

Tip: If you are using the C++ class library ID FEDM, you can use the function GetFeUsbFunction
of the base class FEDM_Base to get the pointer. Then the DLL is automatically loaded the first
time the function is invoked and then removed from the address space of the application in the
class destructor. As a parameter you pass a constant to the function GetFeUsbFunction that
identifies the function. These constants are defined in the header file feusb.h.
Example:
FEDM_I1SCReader m_Reader; // FEDM_ISCReader is derived from FEDM_ Base
LPFN_FEUSB_GET_ERROR_TEXT Ipfn = NULL;
Ipfn = (LPFN_FEUSB_GET_ERROR_TEXT)

m_Reader .GetFeUsbFunction(FEUSB_GET ERROR_TEXT);
if(Ipfn 1= NULL)

Ipfn(iErrorCode, cErrorCode);

FEIG ELECTRONIC GmbH Page 43 (of 52) HO00501-17e-ID-B.doc

OBID®

Manual

ID FEUSB V4.02.04

8. Appendix

8.1. Error codes

Error constant Value |Description
FEUSB_ERR_EMPTY_DEVICELIST -1100 | Device handle is empty (no device objects
stored)
FEUSB_ERR_EMPTY_SCANLIST -1101 | Scan list is empty (no USB devices
available)
FEUSB_POINTER_IS_NULL -1102 | A passed pointer is NULL
FEUSB_ERR_NO_MORE_MEM -1103 | Insufficient memory
FEUSB_ERR_SET_CONFIGURATION -1104 | The USB configuration could not be set
FEUSB_ERR_KERNEL -1105 | An error occurred in the kernel driver during
USB transfer
FEUSB_ERR_UNSUPPORTED_OPTION -1106 | Unsupported option
FEUSB_ERR_UNSUPPORTED_FUNCTION -1107 | Unsupported function
FEUSB_ERR_NO_FEIG_DEVICE -1110 | USB device has no FEIG identifier
FEUSB_ERR_SEARCH_MISMATCH -1111 | No device(s) with the specified search
criteria were found
FEUSB_ERR_NO_DEVICE_FOUND -1112 | No device(s) was/were found
FEUSB_ERR_DEVICE_IS_SCANNED -1113 | The device is already in the scan list
FEUSB_ERR_SCANLIST_OVERFLOW -1114 | Scan list is filled with 127 entries and an
attempt was made to add another
FEUSB_ERR_UNKNOWN_HND -1120 | The passed device handle is unknown
FEUSB_ERR_HND_IS_NULL -1121 | The passed device handle is 0
FEUSB_ERR_HND_IS_NEGATIVE -1122 | The passed device handle is negative
FEUSB_ERR_NO_HND_FOUND -1123 | No device handle found in device handle
list
FEUSB_ERR_TIMEOUT -1130 | Timeout when reading USB channel
FEUSB_ERR_NO_SENDDATA -1131 | No send data passed
FEUSB_ERR_UNKNOWN_INTERFACE -1132 | Unknown interface
FEUSB_ERR_UNKNOWN_DIRECTION -1133 | Unknown data direction
FEUSB_ERR_RECBUF_TO_SMALL -1134 | Receive buffer is too small
FEUSB_ERR_SENDDATA_LEN -1135 | Length of send data incorrectly indicated
FEUSB_ERR_UNKNOWN_DESCRIPTOR_TYPE -1136 | Unknown descriptor type
FEUSB_ERR_DEVICE_NOT_PRESENT -1137 | USB device not presently connected to
USB port

FEIG ELECTRONIC GmbH

Page 44 (of 52)

HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04
Error constant Value |Description
FEUSB_ERR_DEVICE_NOT_SCANNED -1140 | Device was not previously scanned
FEUSB_ERR_DEVHND_NOT_IN_SCANLIST -1141 | Device not entered in scan list
FEUSB_ERR_DRIVERLIST -1142 | No driver list could be created in the USB
driver
FEUSB_ERR_UNKNOWN_PARAMETER -1150 | Pass parameter is unknown
FEUSB_ERR_PARAMETER_OUT_OF_RANGE -1151 | Pass parameter is too large or too small
FEUSB_ERR_ODD_PARAMETERSTRING -1152 | An unsupported option was invoked by the
pass parameter
FEUSB_ERR_INDEX_OUT_OF_RANGE -1153 | The passed list index is not in the value
range of 1...65535
FEUSB_ERR_UNKNOWN_SCANOPTION -1154 | Unknown scan option
FEUSB_ERR_UNKNOWN_ERRORCODE -1155 | Unknown error code
FEUSB_ERR_DEV_DESC_LENGTH -1160 | Length error in device descriptor
FEUSB_ERR_CFG_DESC_LENGTH -1161 | Length error in configuration descriptor
FEUSB_ERR_INTF_DESC_LENGTH -1162 | Length error in interface descriptor
FEUSB_ERR_ENDP_DESC_LENGTH -1163 | Length error in endpoint descriptor
FEUSB_ERR_HID_DESC_LENGTH -1164 | Length error in HD descriptor
FEUSB_ERR_STRG_DESC_LENGTH -1165 | Length error in string descriptor
FEUSB_ERR_READ_DEV_DESCRIPTOR -1166 | Device descriptor read error
FEUSB_ERR_READ_CFG_DESCRIPTOR -1167 | Configuration descriptor read error
FEUSB_ERR_READ_STRG_DESCRIPTOR -1168 | String descriptor read error
FEUSB_ERR_MAX_INTERFACES -1170 | The device has too many interfaces
FEUSB_ERR_MAX_ENDPOINTS -1171 | The device has too many endpoints
FEUSB_ERR_MAX_STRINGS -1172 | The device has too many strings

FEIG ELECTRONIC GmbH

Page 45 (of 52)

HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

8.2. List of parameter identifiers

Parameter identifier | Value range Default | Unit Description
DeviceHnd 268435456... - - Device handle
536870911

Use:

. FEUSB_GetScanListPara

Device-ID Hexadecimal: - - Serial number in USB device
0x00000001 ...
Use:
OXFFFFFFFF .
. FEUSB_GetScanListPara
Decimal: e FEUSB_GetDevicePara

1... 4294967295

Timeout 0...99999 1000 ms Maximum wait time for receive protocol.

Use:
. FEUSB_SetDevicePara

FamilyName s. 8.5. List of - - Name of reader family

cFamilyName in the
FEUSB_SCANSEARCH

structure

Use:
. FEUSB_GetScanListPara
. FEUSB_GetDevicePara

DeviceName s. 8.6. List of - - Name of reader
cDeviceName in the
FEUSB_SCANSEARCH

Use:
. FEUSB_GetScanListPara

structure
. FEUSB_GetDevicePara
Present 0,1 - - Query device presence on USB channel
Use:
. FEUSB_GetScanListPara
ExclusiveAccess 0,1 1 0 Activates (1) or deactivates (0) the exclusive access.

This setting is global for all USB reader.

Use:
. FEUSB_SetDevicePara

Only for Windows

FEIG ELECTRONIC GmbH Page 46 (of 52) HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

8.3. List of constants for the FEUSB_EVENT _INIT structure

The constant definitions are contained in the file FEUSB.H and FEUSB.BAS.

Constant Value | Use Description

FEUSB_THREAD_ID 1 uiFlag Event signaling with thread message
FEUSB_WND_HWND 2 uiFlag Event signaling with window message
FEUSB_CALLBACK 3 uiFlag Event signaling with callback function
FEUSB_CONNECT_EVENT 1 uiUse Signaling when reader is connected
FEUSB_DISCONNECT_EVENT 2 uiUse Signaling when reader is disconnected

FEIG ELECTRONIC GmbH Page 47 (of 52) HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

8.4. List of constants for the FEUSB_SCANSEARCH structure

The constant definitions are contained in FEUSB.H, FEUSB.BAS and FEUSB.PAS.

Constant Value | Use Description
FEUSB_SEARCH_FAMILY 1 iMask cFamilyName is searched
FEUSB_SEARCH_PRODUCT 2 iMask cDeviceName is searched
FEUSB_SEARCH_DEVICEID 4 iMask dwDevicelD is searched

8.5. List of cFamilyName in the FEUSB_SCANSEARCH structure®

String Description

"OBID i-scan Proximity"

"OBID i-scan Midrange"

"OBID i-scan UHF Midrange"

"OBID i-scan UHF Long-Range"

"OBID classic-pro"

8.6. List of cDeviceName in the FEUSB_SCANSEARCH structure?

String Description

"ID ISC.PRH100-U" Reader in the OBID i-scan Proximity family

"ID ISC.PRH101-U" Reader in the OBID i-scan Proximity family

"ID ISC.MR100-U" Reader in the OBID i-scan Midrange family

"ID ISC.MR101-U" Reader in the OBID i-scan Midrange family

"ID ISC.MRU200" Reader in the OBID i-scan UHF Midrange family
"ID CPR.04-USB" Reader in the OBID classic-pro family

"ID CPR40.xx-U" Reader in the OBID classic-pro family

! List to be expanded in the future
? List to be expanded in the future

FEIG ELECTRONIC GmbH Page 48 (of 52) HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

8.7. Revision history

V4.02.02
e Windows / Windows CE:

1. Bugfix when detecting USB-Sticks.

V4.02.00

e Windows:
1. Migration of the development environment from Visual Studio 2008 to Visual Studio 2010.
2. Improved thread safeness
. DLL without MFC

3

4. First release of 64-Bit version

5. Dynamic binding to Log-Manager
6

. Madification in internal Plug-and-Play mechanism for improved event handling

e Windows CE:

1. Improved thread safeness

e Linux:

1. No changes

e First Release for Mac OS X, V10.7.3 or higher

V4.00.00
e Windows / Windows CE:

1. Migration of the development environment from Visual Studio 6 to Visual Studio 2008.

2. Adaptation of the Callback declarations in struct _FEUSB_EVENT_INIT concerning the
calling convention. Thus, this version of FEUSB is not compatible with the previous
version and with applications compiled against the previous version of FEUSB. Code
modifications are not necessary, but re-compilation of applications is mandatory.

3. New error code -1138 (Error while transmit data)
4. Extended internal error handling

5. Bugfix (only for Windows CE): Transformation of the Device-ID from Unicode-String into an
unsigned long value

FEIG ELECTRONIC GmbH Page 49 (of 52) HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

e Linux:

1. Bugfix for deactivating of the Plug-and-Play Thread with file feusb.conf

V3.06.01
Windows, Windows CE

e Extended internal error handling

e Support of unified Device-ID (for Linux already realized)

Vv3.05.00
e Ready for Windows 7 (x86 and x64) by use of the kernel driver OBIDUSB V2.50

e Linux: rule file 41-feig.rules enables an installation without root rights

Vv3.04.00

e Windows and Windows CE: Modification in internal Plug-and-Play mechanism for
improved event handling

Vv3.03.04
e New Funktion FEUSB_GetDrvVersion for request of information about installed kernel-
driver

e Request of error messages to error codes from kernel-driver

e Error correction for Windows 2000: limitation of every transfer to 4096 bytes.

Vv3.03.02

e Exclusive use of a USB reader with one applikation. This is a modification against former
versions, where multiple applications could share one USB reader.

This setting can be changed by using the parameter “ExclusiveAccess” with the function
FEUSB_SetDevicePara.

e Support of bulk transfer for new reader generations

Vv3.00.00

e Compatibility with new kernel driver for Vista

V2.05.00

e First Linux version.

V2.03.02

e The new version is 100% backward compatible with the previous version.

FEIG ELECTRONIC GmbH Page 50 (of 52) HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

e Bugfix for DevicelD > Ox7FFFFFFF
e Translation of the error code 0xEO00100C in FEUSB_ERR_TIMEOUT (-1130)

VvV2.03.01

e The new version is 100% backward compatible with the previous version.

e Support for new USB protocols.

o New functions: FEUSB_Transmit, FEUSB_Receive, FEUSB_SetDevicePara
e New parameter: TIMEOUT

e New error code: -1106

Vv2.01.00

e Bug fix: communication hang-up after a previously failed communication.

Vv2.00.00

e The new version supports Windows XP.
e The kernel driver OBIDUSB.SYS and OBIDUSB9.SYS must be Version 2.00.
e New error codes: -1166, -1167, -1168
e New parameters for the function FEUSB_GetDevicePara: DeviceName, FamilyName

¢ New parameters for the function FEUSB_GetScanListPara: DeviceName, FamilyName

¢ Connect messaging to applications with device ID.

V1.02.00

e The new version is nearly 100% backward compatible with the previous version 1.00.00.
The only incompatibility is in the value shift of the scan parameter FEUSB_SCAN_ALL
from 0x03 to OxOF.

e Messaging to applications also for Readers which are not yet entered in the scan list.

e The device handle now has an offset of 0x10000000 (decimal 268435456) for direct use
with other FEIG DLLs (e.g., FEISC.DLL).

e The new scan parameter FEUSB_SCAN_NEW allows searching for unscanned Readers.
e New function: FEUSB_GetLastError.

e New error code: -1114 for scan list overflow.

V1.01.00

e Internal version

FEIG ELECTRONIC GmbH Page 51 (of 52) HO00501-17e-ID-B.doc

OBID® Manual ID FEUSB V4.02.04

V1.00.00
¢ Due to a new kernel driver, this version is no longer compatible with previous versions.

o New functions: FEUSB_AddEventHandler, FEUSB_DelEventHandler,
FEUSB_IsDevicePresent

V0.99.01
e Support for Windows 98, 98SE and 2000
e Support for Open- and Universal-Host-Controller-Interface

e New error code: -1103

FEIG ELECTRONIC GmbH Page 52 (of 52) HO00501-17e-ID-B.doc

	Licensing agreement for use of the software
	Content:
	Introduction
	Shipment
	Windows XP / Vista / 7
	Windows CE
	Linux
	Mac OS X

	Changes since the previous version
	Installation
	32-Bit Windows XP/Vista/7
	Windows CE
	32-Bit Linux
	libusb

	64-Bit Mac OS X
	libusb

	Deactivating the Plug-and-play Thread

	Incorporating into the application program
	Supported Development Tools
	Incorporating into Visual Studio
	Incorporating into Xcode

	A brief introduction to USB
	Programming interface
	Overview
	Thread security
	Structure and function of the scan list
	Event signalling
	Function list9F
	Function descriptions
	FEUSB_GetDLLVersion
	FEUSB_GetDrvVersion (only for Windows)
	FEUSB_GetErrorText
	FEUSB_GetLastError
	FEUSB_Scan
	FEUSB_ScanAndOpen
	FEUSB_GetScanListPara
	FEUSB_GetScanListSize
	FEUSB_ClearScanList
	FEUSB_OpenDevice
	FEUSB_CloseDevice
	FEUSB_IsDevicePresent
	FEUSB_GetDeviceList
	FEUSB_GetDeviceHnd
	FEUSB_GetDevicePara
	FEUSB_SetDevicePara
	FEUSB_AddEventHandler
	FEUSB_DelEventHandler
	FEUSB_Transceive
	FEUSB_Transmit
	FEUSB_Receive

	Dynamic linking under C++
	Appendix
	Error codes
	List of parameter identifiers
	List of constants for the FEUSB_EVENT_INIT structure
	List of constants for the FEUSB_SCANSEARCH structure
	List of cFamilyName in the FEUSB_SCANSEARCH structure18F
	List of cDeviceName in the FEUSB_SCANSEARCH structure19F
	Revision history
	V4.02.02
	V4.02.00
	V4.00.00
	V3.06.01
	V3.05.00
	V3.04.00
	V3.03.04
	V3.03.02
	V3.00.00
	V2.05.00
	V2.03.02
	V2.03.01
	V2.01.00
	V2.00.00
	V1.02.00
	V1.01.00
	V1.00.00
	V0.99.01

