Coii

Welcome to RFID

Tutorial

The art
of Programming

for

OBID i-scan®

and

OBID®cIassic-pro

(based on SDK version up from 4.02.00)

preliminary
public (B)
2012-08-21
Tutorial.docx

OBID® Tutorial

Note

© Copyright 2012 by FEIG ELECTRONIC GmbH
Lange Stral3e 4
D-35781 Weilburg-Waldhausen
Germany

http://www.feig.de
obid-support@feig.de

The indications made in these mounting instructions may be altered without previous notice. With the edition of these
instructions, all previous editions become void.

Copying of this document, and giving it to others and the use or communication of the
contents thereof, are forbidden without express authority. Offenders are liable to the
payment of damages. All rights are reserved in the event of the grant of a patent or the
registration of a utility model or design.

Composition of the information given in these mounting instructions has been done to the best of our knowledge. FEIG
ELECTRONIC GmbH does not guarantee the correctness and completeness of the details given and may not be held
liable for damages ensuing from incorrect installation.

Since, despite all our efforts, errors may not be completely avoided, we are always grateful for your useful tips.

FEIG ELECTRONIC GmbH assumes no responsibility for the use of any information contained in this manual and
makes no representation that they free of patent infringement. FEIG ELECTRONIC GmbH does not convey any license
under its patent rights nor the rights of others.

The installation-information recommended here relate to ideal outside conditions. FEIG ELECTRONIC GmbH does not
guarantee the failure-free function of the OBID® -system in outside environment.

OBID® and OBID i-scan® are registered trademarks of FEIG ELECTRONIC GmbH.
Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Windows Vista is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries

Oracle and Java® are registered trademarks of Oracle Corporation.

Linux® is a registered Trademark of Linus Torvalds.

Apple, Mac, Mac OS, OS X, Cocoa and Xcode are trademarks of Apple Inc., registered in the U.S. and other countries.
Electronic Product Code (TM) is a Trademark of EPCglobal Inc.

I-CODE® and Mifare® are registered Trademarks of Philips Electronics N.V.

Tag-it (TM) is a registered Trademark of Texas Instruments Inc.

Jewel (TM) is a trademark of Innovision Research & Technology plc.

FEIG ELECTRONIC GmbH Seite 2 (von 104) Tutorial.docx

http://www.feig.de/
mailto:obid-support@feig.de

OBID® Tutorial

Content:

IR |1 o Yo [T o J o I USRS 7
1.1. Standard SOFtWaAre TOOISoeiiiiiiiiiiiiiiiiiiii ittt b bbb bbb bneannnnnnnes 8
1.1.1. The applications ISOStart and CPRStart..............ccuiiiiiieiiii e 8
1.1.2. FIrmWAar€-UPCALEccoeeeiieeiiiiiei e e e e et s e e e e e e e aaat s s e e e aeeeannne 10

2. Overview of all OBID® Reader familiesc.c.oceveeeieeiieeeeeeeeeeeee e, 11
P2 T o] o T (o T =S 11
2.2. COMMUNICAION INTEITACES. .. e e e e et e e e 11
2.3, TranSMIiSSION PrOTOCO......uiiiiiiiiiiiiiiiiiiiiitibe bbb aebnennnne 12
P (- Vo =) G o PSP 12
2.5, TraNSPONAEI-APL ... e e e e e et e e bt a e e e e ae e e aa e e e e e 12
2T =T o = | = g =T 11 13
O] ol (o] k3N (o] g T o] =To | =11 [0 o H PSPPI 14
3.1. Supported OPEerating SYSTEMSuuii et a e e 15
3.2. FEIG Kernel Driver fOr WINGUOWSuuuuiiisssss st nn s a s e aaaaaa e 15
3.2.1. Standard-Driver for USB-REAUEN..............uuiiiiiiiiiiiiiiiiiieeiieiiiiiisssseeeeeeaeaeeeeeeneeeeneennnenne 15
3.2.2. PC/SC-Driver for OBID® classic-pro REATETcc.couevieeeeeeeeeeeeeee e, 15

RS T o [T 1o = T =T P PP 16
3.3.1. Function Libraries for the transport layer.............ieiii i, 16
3.3.2. Function Library for the protoCol layerooeuuiiiiii i 16
3.3.3. Function Library for external Function Units (Multiplexer, Antenna Tuner) 17
3.3.4. Function Library for T=CL based APDU handling.............ccoeiiiiiiiiiiiiiiiieeeeeeeiienen, 17
3.3.5. Class Libraries (C++, Java, CH) ...ccoeeeiiiii e e e e e e e e aaaas 17

3.4, Custom-Applications iN the REAAET ... 19
4. OVerview Of @ll LIDFAri@S ... e e e e e e e e e ann s 20
A1, FUNCHION LIDFAITES ...ttt ittt ettt e e e e e e e e eeatt e e e e e e e e eeaatnaaaaeeaeeennnnes 20
.11 FECOM.....iiiiiiiniiiiiiiinii s a e aaaaaaaaaaaaaaaas 20
1.2, FEUSBttt e e e et a e e e e e e e e e e aaaees 21
G T IO PP UP PP 22
1 U 23
T 0 I U 25
1.6, FEFU ..ottt e e e e e e aaaae s 26

4.2, Class LIDrariEs. ..ot e et e e e e e e e e eaaas 27
A.2.0. FEDM oo e 27
4.,2.2. OBIDISCA4J and OBIDISCANETcuuiiiiiie et e et e e e era e e e e 29

G T =T To BT =To UL 1P PP 30
T = o = o I o U 31
6. General preliminary notes to the SECHIONScoiiiiii i e 32
7. Section 1: BasiC INIIAlIZAtIONSuuuiiiii i eeeeaneee 33
8. Section 2: Establish a connection to the Reader ... 35
8.1. Serial Port (RS232 / RSA85 [RSA22)......uuuiiieieieeseeeee e a e anaaaaaaaaaaaaaaaaeens 35
8.2, BIUBTOOTN . 37

S0 T U 1] = 39
8.4. TCP/IP (LAN @NG WLAN) ... eittitittie ettt e e sttt e e e e e e et e e e e e e e e s s s nnnbnaeaaaeaeeaaans 43
8.5. Excursion: Secured data transmission with encryption..........cccccoovoiiiiii i 44

FEIG ELECTRONIC GmbH Seite 3 (von 104) Tutorial.docx

OBID® Tutorial

8.6. Excursion: Error handling for TCP/IP COMMUNICALIONuuiiiiiiiiiiiiiiiiiiiiieees 46
8.6.1. COMMUNICALION BITOIS .. .iiiiiii it e e eee ettt e e e e e e ettt e e e e e e eeeeta e e e e e eeeeaeta e e e eaeeeeennnnnnnns 46
8.6.2. Errors while establish @ CONNECHIONceiviiiiiiiiiiiiiiiiiiiiii e 47
8.6.3. Errors while closing the CoONNECtioNcooiiiiiiiii e 48
8.6.4. Problem with broken communication link — the Keep-Alive option...................ccoeeeees 48

8.7. Excursion: Detecting Readers with different Protocol Frames in one App......ccccc....... 49
8.7.1. Detecting at SErial POtuuuiii e e e e 50
8.7.2. DeteCting At USB ... 52

9. Section 3: Basic knowledge about how to use SendProtocol()........cccevvvvevrervennnnee. 53
10. Section 4: Read of important information from Readercccevvvvvviiiieee e, 56

10.1. Reader Information: The method ReadReaderInfo()......ccccceeeviiieiiiiiiiiiie e, 56

10.2. Reader Diagnostic: The method ReadReaderDiagnosStiC()........covvvviviviiiiiiiiiiiiiiiinnnnne. 58

10.3. Reader Configuration: The method ReadCompleteConfiguration()...........cceceeevvvvvnnnn.. 60

11. Section 5: Programming for the HOSt-MOdeccooiiiiiiiiiiiiiiii e 62

0 T [V7T | 0 T 62

11.2. Read / Write TranSpoNder dat@...........uucoiiieeiiiiiiiiei e 66
11.2.1. Normal addresSsed MOUEoooiiiiiiiiiei e 66
11.2.2. Extended addressed MOAEcoooieiiiiiiiiii e 69

11.3. Excursion: Inventory with multiple antennas............ccovvieiiiiii e, 72

11.4. The application ISOHOSTSAMPIE......oouuniiiee e 75

12. Section 6: Using TagHandler classes with Host-Mode...........ccoooooiiiiiiiiiiiiiiinneeeee, 76

D2 I = Y 1= | 76

12.2. INVENTOrY @nd SEIECTo e 77

D2 B = o | = T o 1= g o = LR =S 80
12.3.1. Life Cycle of TagHandler OBJECLS.........couuuuiiiiiieiiee e, 80
12.3.2. NamMiNG CONVENTIONSo eeeiiiiii e e ettt e e e et e e e e e e e eeata e e e eeeeeeanenn e e e eeaeeeennees 80
12.3.3. Base class FedmlIscTagHandIer.................cocceviiiiiiiiiii 81
12.3.4. Excursion: Class FedmliscTagHandler ISO15693............ccoovviiiiiiiieeeeieiiiei e, 82
12.3.5. Excursion: Class FedmiscTagHandler_ EPC_Classl_Gen2.........ccccevvvveiiiiiinneennnn. 83
12.3.6. Excursion: Classes FedmlscTagHandler_ISO14443.............cccccovviiiiiiiiiiiiiiiiiiineene, 84
12.3.7. Excursion: Class FedmiscTagHandler _1S014443 4 MIFARE_DESFire................. 85

12.4. The application TagHanNdlerSampleooovviiiiiiiiiiiiiiiiiiiiie e 86

13. Section 7: APDU Handling with ISO 14443-4 compliant TagS......ccccccvvvvvviiiieeeeennn. 87
14. Section 8: Programming for the Buffered-Read-Modecccceeeevvvviviiiiciiiineeeee, 88

I I/ =Y d a To Yo o o] 0 =T =14 o o PSS 88

14.2. Programming the QUETY CYCIE ..o 88

14.3. Structure of the received data...........oviiviiiiiiiiiiiiiiiiiiiiei e 88

14.4. Adjust the method Of Operation............ooi e 89
I T (o B =3 o) 1 SRS 89
14.4.2. Excursion: Adjust the structure of the data record.............ccoeeviiiiiiiiiie e 89
14.4.3. EXCUrSIioN: Triggered MOUEcoieieeiieeiiiee et e e e e e e e et e e e e e eenanes 89
14.4.4. Excursion: Automatic activation of OUIPULSccuuviiiieiiiiiicee e, 89
14.4.5. Excursion: Writing data to the TranSponder ... 89

14.5. The application BRMSamPIEoooiiiiiiiiiiiiiiiiiiiiiieiee e 90

15. Section 9: Programming for the Notification-Modecccceeviiieiiiiiiiiiciiiee e, 91

15.1. Method Of OPEratiONccooeeiiieie e e e e e e e e e e e aees 91

15.2. REQISTEI @N EVENT .coiiiiiiiiiiieeeiee ettt 92

FEIG ELECTRONIC GmbH Seite 4 (von 104) Tutorial.docx

OBID® Tutorial

TR B V= oY o = o Vo o o 94
15.4. Cancel asyNChroNOUS TASKoiiiiiiieiiies e e e e e e e 95
15.5. Adjust the method Of Operation............coi i 95
15.5.1. Excursion: Writing data to the TranSponderoiiii i 96

15.6. Considerations for fail-safe Operation ... 97
15.6.1. Keep-Alive option for detecting broken network linkcccooooiiiiiii 97
15.6.2. Avoiding deadloCk SItUALIONSoiiiiiiiiie e eeeeeeeees 97

15.7. The application NOtifySample. ... 98
16. Section 10: Programming for the SCan-Modec.coooriiiiiiiiiiiiee e 99
16.1. Method Of OPEratiONccceeeiiieei e e e e et e aeeees 99
16.2. Select the OULPUL INTEITACE.oiiiiiiiiiieeieeeieee e 99
GRS I =T TSy (=T =T I =A< o | PSP 99
G S V=T oY o = o T o o ST 99
16.5. Adjust the method Of Operation...........ccooi i e 99
16.5.1. Excursion: Setting the data formatc..oooiiiiiiii e 99
16.5.2. Excursion: HID (Human-Interface-DeVICE)coeuuuuiiiiieeeeiiiiiiiiee e e 99

16.6. The application SCaANSAMPIEccoviiiiiiii e e e 99
17. Section 11: Management of the Reader configurationccccovvvvviiiiieneeeen, 100
17.1. Persistence of the Reader configurationcccccooiii i, 100
17.1.1. Physical (0ld) StrUCIUIE........uvuiei et ie et e e e e e s e e e e e e e e aat e e e e e e eennee 100
17.1.2. Logical (NEW) SIIUCKUIEeuviiiiei e eeeeeeei e e e e e e e e et s e e e e e e e e aar e s e eaaaeannees 100

17.2. Read/Modify/Write of the Reader configurationccccocviiiiii i, 100
17.3. Serialization of the Reader configuration into an XML file........ccccccooiiiiiii e, 100
18. Section 12: Activation Of QULTPULSuiiie e 101
19. Section 13: Reading states of digital INPULS.......cccooiiiiiiiiiiiii e 102
20. Section 14: ReSEet METNOUS .. .uiueiiiiiiiiieiiiii ittt eeeeeeeeeeeeees 103
21. Section 15: Classes for external FUNCtion UNItS...........euvviiiiiiiiiiiiiiiiiiiiiiiiiieiieeeee, 104
21.1. Multiplexer (HF @and UHF)ccooooi et e e 104
21.2. Automatic AntennNa TUNET (HF).......ooiiiiiiiiiiiiiee e 104
21.3. The Application DATUNINGTOO! ...couuiiiiii e 104
21.4. People-Counter in HF-Gate-ANTENNEASooiiiiiiie e 104

FEIG ELECTRONIC GmbH Seite 5 (von 104) Tutorial.docx

OBID® Tutorial

Notes concerning this tutorial

This tutorial describes software libraries which are also described in detail in manuals or document
files. For this reason we have limited the documentation to what is absolutely necessary for
understanding the functionality and use of the libraries. It is assumed that the reader of this tutorial
reads the system manual of the used OBID® RFID-Reader and the OBID®-Library manuals too.

FEIG ELECTRONIC GmbH does not repeat the same information about OBID® RFID-Readers in
different manuals or use cross-references to certain pages in a different document. This is
necessary due to the constant updating of manuals, and it prevents confusion caused by
information in out-of-date documents. The reader of this tutorial is therefore well advised to check
regularly that he has the latest manuals. If not, these can of course be obtained whenever needed
from FEIG ELECTRONIC GmbH.

FEIG ELECTRONIC GmbH Seite 6 (von 104) Tutorial.docx

OBID® Tutorial

1. Introduction

FEIG ELECTRONIC GmbH has developed different, hierarchical structured software libraries to
simplify the integration of OBID® RFID-Readers into customers applications.

A common attribute of all components is the support of all OBID®-Reader families with a uniform
Application Programming Interface (API).

Class libraries for the most popular programming languages C++, Java and C# (VB.NET)
represent the highest level in the software stack and will get the main focus of this Tutorial.
Reader- and Transponder management and the serialization of the Reader configuration are some
highlights of the class libraries.

The class libraries are based upon function libraries, realizing the transport and protocol layers.
These function libraries have a C interface and can be used with different programming languages.

The main intention of this tutorial is to give application programmers a structured introduction to the
APIs for OBID® RFID-Readers with the help of hands-on examples. The executable samples
included in the SDKSs offer an advanced stadium.

FEIG ELECTRONIC GmbH Seite 7 (von 104) Tutorial.docx

OBID® Tutorial

1.1. Standard Software Tools

1.1.1. The applications ISOStart and CPRStart

The demo programs ISOStart and CPRStart have been developed to familiarize you with the

functionality of the OBID® RFID-Readers. Also, these tools can be used as reference applications
to test intended interactions with RFID-Readers and RFID-Transponders or to compare with the

results of your application.

s
{> 1SOStart 2012 - Version 09.01.02
-

Fi

=

Detect Open Save Cut Copy P

xmil

FEIG ELECTRONIC GmbH - advanced reader technologies -
- = . .

Print Qutput COM-Port About

Reader Basics ID ISC.LRU3000 - Commands

=<3 TD ISCLRU3000 Commands.
[0x22] Read Buffer

[0x31] Read Data Buffer Info
[0x32] Clear Data Buffer
[0x33] Initialize Buffer

[0x52] Baudrate Detection

I Cenfiguration
|
Buffered Read Mode

[0x5F] Set Firmware Upgrade
[0%63] RF-Controller Reset
[0x64] System Reset

[0x65] Get Software Version
[0x66] Get Reader Info
[0x69] RF Reset

[0x6A] RF Output ONOFF
[06E] Reader Diagnostic
[0%72] Set Output

[0x74] Get Input

[0x76] Check Antennas
[0x87] Set System Date
[088] Get System Date

Netification Mode

4

EPCglobal

B

¢ [0xAQ] Reader Login

[=-4_3 Host Commands

) £3 [0%B0] Commands

¢ [0x01] Inventory

¢ [0x23] Read Multiple Blocks

9 [0x24] Write Multiple Blocks

(2] [0xB3] EPC Commands

(] [0xB4] EPC Cust & Prop Commands
-] Function Unit Commands

[0401] Inwentary

‘UK

" More Data Requested

Mod
% New Inventory Requested
I~ Request with Antenna

Oy 1 &llon ‘

|l'1l'2 o e A

Inventory Results:

1 Transponder in Protocol
1. Transponder
.: 0x84 (EBC Class 1 Gen 2)
.z 3000
.z 000000000000000000000001E200600300C3ETEY

m

Caommunication Part
|P-Address

192168 3 .91
Foit 10001

TCPAP -

IV &dv. Protocol

00 00 00 00 OO0 00 00 00 00 00 00 76 D7 oK
03/30/12 09:23:24.515 >> 02 00 09 FF BO 01 00 18 43

03/30/12 09:23:24.550 << 02 00 22 00 BO 00 01 &4 02 16 30 00 OO 0O 00 00 00 OO OO 00 00 0O OO 01 E2 00 &0 03 00 C3 E7 B9 75 5C OK
'
- ms NUM

?00 00 00 00 00 00 00 00 4B 00 4C 32 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 3¢ -
%31 38 39 30 31 32 33 34 35 36 37 38 39 00 4D 30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 00 00 00 00 00 00 00 00 00 00 4E 00 00 00 00 00 00 00 00 00 00 40
& 00 00 00 00 00 OO 00 00 00 00 00 00 Q0 00 00 00 00 00 00 00 4F OB 4F 42 49 44 S5F 4C 52 55 SF 4C 52 00 00 00 00 00 00 00 00 00 00 00 0O 00 OQ 00 00 00 00 00 S0 30 31 32 33 34

35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 00 00 00 00 OO0 00 00 OO0 0O 00 51 00 00 00 0O 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 a0

52 00 01 32 00 01 00 OA 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 53 CO A8 03 DC 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 27 15 00 00 40

00 00 00 00 00 OO0 54 00 00 00 00 00 Q0 00 Q0 55 03 00 00 00 00 00 00 00 00 00 Q0 00 00 0O 00 00 00 00 Q0

@1D

Using this software you can:

e Test the communication with RFID-Transponders.

¢ Read out and modify the configuration of OBID® RFID-Readers.
¢ Communication with Function Units like Multiplexer or Dynamic Antenna Tuner
e Activate a Firmware Upgrade

With each action the transmission protocols between PC and Reader are displayed on the screen.
This transparency guides you to the software interface of the OBID® RFID-Readers. The respective
system manuals should be referred for interpreting the protocols and for studying the reader
properties.

Unique features are:

FEIG ELECTRONIC GmbH Seite 8 (von 104) Tutorial.docx

OBID® Tutorial

e Reader Editor for editing the OBID® RFID-Reader parameters. You can open any number of
reader files and “link” them with various interface types.

e Protocol Editor for manual protocol entry and editing.
¢ Protocol Window for visualizing the communication.

e Test of the automatic reader modes like: Buffered Read Mode, Scan Mode, Notification Mode.

FEIG ELECTRONIC GmbH Seite 9 (von 104) Tutorial.docx

OBID® Tutorial

1.1.2. Firmware-Update

The application OBIDFirmwareUpdateTool can be used to perform a firmware update with an
OBID® RFID-Reader. FEIG offers two versions:

One tool with user interface (only for Windows).

OBID Firrmware Update Wizard - Ver. 6.8.0

Update Package

e

g’-g:= =‘{:,' ¥ ACe | o | :
LA ¥ RFC/FPGA €5 &5

Update 1

Firrnwace Lpdate of ACC from V0200000 V2.1.0
1. Shep: Activate File Upload., 0K

2 Step: Upload Data . 0K

3 Step: Update Flash

+tddsbbbttdsbb bbb bbb bbbt ins bt DK_

Ready

Update 2
Firrnivare L pdate of RFC/FPGA freen V0202130 ta V2 2.0
1. Step: Sctreate File Upload.. OF |

2 Shep: Delete tanget memory...OFK.
3 Step: Upload data. 0K
E 4. Shep: Update Flazh
ELECTRONIC MMM
L ? y

And one tool for the console (Windows, Windows CE and Linux).

wh DAOBIDYsw-win\Projects\run\obid_fw_update.exe ' |£|E|ﬁ

OBID Firmuware Update Tool — RFID by FEIG ELECTRONIC — Copyright ® 28688-2811
Uerzion B6.68 .60 — Oct 19 2611

Trying to connect a Reader over Ethernet with 192.168.3.98:10001.. . connected

Reader is...ID ISC.LRU3588
firmuware update...
Update of RFC/FPGA from UB2_B2.138 to U2.2.138
Activate File Upload...O0K
Delete target memory...0K

: Upload data...65 of 65...0K

: Update Flash...

B T o o e Ok T O S 4 | 4
L. Step: Rezet target memory...0K

Waiting for reboot of Reader...reconnected successful
Ready

»» Result of Firmuware Update: 0K

Press enter key to exit

FEIG ELECTRONIC GmbH Seite 10 (von 104) Tutorial.docx

OBID® Tutorial

2. Overview of all OBID® Reader families

FEIG ELECTRONIC develops and manufactures RFID-Readers for different target applications.
Over the years and mainly in intense discussions with customers, the continuous engineering
results in three Reader families with familiar command interfaces.

OBID® classic-pro 13,56 MHz Reader for 1ISO14443 compliant Transponders
OBID i-scan® HF 13,56 MHz Reader for ISO15693 complinat Transponders
OBID i-scan® UHF 860...960 MHz Reader for EPC compliant Transponders

The similarities refer to:
- Working modes
- Communication interfaces
- Organisation of the configuration
- Reader-APl: commands for controlling and configuring the Reader
- Transponder-API: standardized, transparent and Custom-specific Transponder commands

- Function-Unit-API: commands for external Function Units

2.1. Working Modes

Every OBID® RFID-Reader supports at least the Host-Mode, which is a polling mode.

Many Readers supports additionally autonomous read modes. These modes have an increased
read performance, as no host communication is necessary. The read data items are either
collected in an internal table (Buffered-Read-Mode or Notification-Mode) or transferred directly
over the serial port or USB (Scan-Mode).

The autonomous read modes can be configured for a wide range of applications. Detailed
information can be found in the system manuals of the Readers.

2.2. Communication Interfaces

OBID® RFID-Readers have one or up to four communication interfaces. Besides the serial port
(TTL-Level, RS232, RS485, RS422), USB or Bluetooth or LAN or WLAN can be implemented too.

Independently of the physical communication interface, the communication protocol is always
identical.

FEIG ELECTRONIC GmbH Seite 11 (von 104) Tutorial.docx

OBID® Tutorial

2.3. Transmission Protocol

All OBID® RFID-Readers have an identical, binary transmission protocol with frame and checksum.
The following pictured send and receive protocol are included in actual almost all Readers and are
the standard frame for future Readers. The old frame with only one length byte, which is currently
present in many Readers, will be no longer supported with future Readers. We would therefor
recommend that new applications should use only the Advanced Protocol Frame.

Reader « Host

L 2 3 4 5 6..n-2)
STX MSB LSB CONTROL-
COM-ADR DATA
(0x02) ALENGTH | ALENGTH BYTE ()
n-1 n
" LSB MSB
CRC16 CRC16
Host < Reader
1 2 3 4 5 6 (7...n-2)
STX MSB LSB CONTROL-
- STATUS
(0x02) ALENGTH | ALENGTH | COMAPR BYTE (DATA)
n-1 n
" LSB MSB
CRC16 CRC16

One of the most significant element of the receive protocol is the Status byte. Application
programmers have to analyze this Status after each communication.

2.4. Reader-API

All OBID® RFID-Readers support a subset of commands for controlling and configuring the
Reader.

Included are read/write/reset of the configuration, read of Reader information, reset commands, RF
on/off and mostly diagnostic commands and commands for digital 1/O, relays and LEDs.

2.5. Transponder-API

The Transponder API is ordered in group of commands and the usage depends on the working
mode.

With Host-Mode, these are the obligatory ISO 15693 and ISO 14443 commands. Some Readers
support additionally optional RF transparent commands, with which the manufacturer specific tag
commands are forwarded by the Reader without modifications. OBID® classic-pro Readers support

FEIG ELECTRONIC GmbH Seite 12 (von 104) Tutorial.docx

OBID® Tutorial

APDUs via the T=CL protocol with ISO 14443-4 compliant Transponders and have SAM-
commands included.

With Buffered-Read-Mode and Notification-Mode a special command set transports the
Transponder data from the Reader.

When the Scan-Mode is activated, no command set is required, because the Transponder data is
transferred at once as a configurable binary data stream over the selected communication
interface.

2.6. Miscellaneous

Some OBID i-scan® HF and OBID i-scan® UHF Reader can communicate with Function Units
(Antenna Multiplexer, Antenna Tuner), which are wired into the antenna cable. The provided API
for these devices is realized with special RF-Transparent commands.

FEIG ELECTRONIC GmbH Seite 13 (von 104) Tutorial.docx

OBID® Tutorial

3. Options for integration

Every software project has its own requirements. Similarly, every programmer has its own
experience and preferences. FEIG ELECTRONIC responded with flexible, hierarchical libraries,
and supports multiple operating systems and programming languages. High-level class libraries for
C++, .NET and Java on top of the library stack offers the most comfortable API (s. Fig. 1). On the
other side, integration on the lowest level — the transport layer — can be realized without any help of
FEIG libraries, because every command is well documented in the system manual of the particular
RFID-Reader.

In the following, we will discuss the pros and cons of the various integration options.

C# Application C++ Application Java Application
Windows, Windows CE Windows, Windows CE, Linux, Windows, Windows CE,
embedded Linux, Max 0S X Linux, embedded Linux

XML-File with
Managed C++, Plnvoke Java Native Interface Reader PC"T:Q'-"'EH""
rofile

XML-File with
Reader Firmware

- “ Firmware Update Module

XML-File with
Reader
Configuration

Application-Level

Protocol-Layer

Transport-Layer

System Driver

FEIG-Driver

System Driver

Fig. 1: Library stack from which the particular SDKs are built

As an alternative to the integration with the help of the native libraries, FEIG offers software
components for middleware on demand.

FEIG ELECTRONIC GmbH Seite 14 (von 104) Tutorial.docx

OBID® Tutorial

3.1. Supported Operating Systems

All basic C and C++ libraries are available for different operating systems. Actually, the following
OS are supported:

Operating System Target Notes
32-Bit 64-Bit
Windows XP X X) with 64-Bit OS: only with 32-Bit Runtime Environment
Windows Vista/7/8 X X
Windows CE X V4.2 or higher
Linux X X) with 64-Bit OS: only with 32-Bit Runtime Environment
Apple Max OS X - X OS X V10.7.3 or higher
Architecture x86_64

With upcoming new OS or on request, FEIG is disposed to adapt the libraries for the requested
os.

Platform independent languages like Java or C# (VB.NET) are supported with special SDKs.
These SDKs are compiled only for 32-Bit Frameworks, but can be used with 32-Bit Runtime
Environments in 64-Bit OS. Native 64-Bit libraries for Java or .NET are actually not available.

3.2. FEIG Kernel Driver for Windows

3.2.1. Standard-Driver for USB-Reader

For driving USB-Readers with Windows and Windows CE, a special kernel driver is required. This
WHQL certified driver can be downloaded from the homepage of FEIG.

3.2.2. PC/SC-Driver for OBID® classic-pro Reader

PC/SC is a standard for integrating smart cards and smart card readers. With Windows and
Windows CE, PC/SC is realized as the Smart Card Library and part of the operating system. FEIG
provides a PC/SC kernel driver for some OBID® classic-pro Readers for Windows XP, Vista, 7 and
8 and for Windows CE on demand.

Drivers for Linux and Apple’s Mac OS X are actually not provided.

FEIG ELECTRONIC GmbH Seite 15 (von 104) Tutorial.docx

OBID® Tutorial

3.3. FEIG-Libraries

3.3.1. Function Libraries for the transport layer

The transport layer is the first and lowest library layer in the library stack. For each communication
port type a specialized function library with a C interface is provided: FECOM for the serial port and
Bluetooth', FEUSB for USB and FETCP for TCP/IP (IPv4) communication over LAN or WLAN. The
main task of these libraries is to manage the transport of data in cooperation with the port drivers of
the operating system. The C interface makes these libraries compatible with the most important
programming languages and development systems.

Programmers selecting this integration layer have to implement the protocol handling (build and
split of frames, CRC check and check of frame length) in their application. This creates
considerable programming effort, and it is to be considered whether the entry is imperative at this
level.

.NET and Java applications have no access to this layer.

Based on these libraries examples are not provided in the context of this tutorial.

3.3.2. Function Library for the protocol layer

The protocol layer is one layer above the transport layer and is realized with the function library
FEISC. The main task is to implement the protocol handling (build and split of frames, CRC check
and check of frame length) in cooperation with the libraries in the transport layer. The C interface
makes this library compatible with the most important programming languages and development
systems.

The libraries of the transport layer are bound dynamically at runtime. A Plug-in mechanism is
provided to support vendor specific port types.

Programmers selecting this integration layer (usually with Pascal, Delphi, VB6) can focus their
work to the basic communication tasks. May be the writing of standard Reader control commands
is more easily, the handling of Transponder commands or especially the programming for the
working modes Buffered-Read-Mode or Notification-Mode is more complex and it is to be
considered whether the entry is imperative at this level.

.NET and Java applications have no access to this layer.

Based on this library only few examples are provided in the context of this tutorial.

! Connected with a virtual, serial port based on the Bluetooth stack with the Serial Port Profile (SPP)

FEIG ELECTRONIC GmbH Seite 16 (von 104) Tutorial.docx

OBID® Tutorial

3.3.3. Function Library for external Function Units (Multiplexer, Antenna Tuner)

Support for Function Units which are wired into the antenna cable is provided with the library FEFU
and depends on FEISC. The C interface makes this library compatible with the most important
programming languages and development systems.

Programmers selecting this integration layer (usually with Pascal, Delphi, VB6) can focus their
work to the basic communication tasks.

C++ programmers have the free choice to use this library or a specialized C++ class from the class
library FEDM, because there is no elementary difference concerning the programming effort.

.NET and Java applications have no direct access to this layer. Instead of that, the control of the
Function Units is realized with a specialized class.

3.3.4. Function Library for T=CL based APDU handling

APDU (Application Protocol Data Unit) centric applications find support with the library FETCL
which depends on FEISC. APDUs are transmissioned on the RF field with T=CL protocols and can
be applied with ISO 14443-4 compliant RFID Transponders. The C interface makes this library
compatible with the most important programming languages and development systems.

C++ programmers have the free choice to use this library or specialized TagHandler classes from
the C++ class library FEDM.

.NET and Java applications have no direct access to this layer. Instead of that, other interfaces are
provided like TagHandler classes or an extension in the main reader class.

3.3.5. Class Libraries (C++, Java, C#)

The class libraries for C++ (FEDM), Java (OBDISC4J) and .NET (OBIDISC4NET) represent the
highest level in the software stack and support all OBID®-Reader families. Java and .NET libraries
are realized as a small wrapper layer above the C++ library FEDM and have almost the same API.

The C++ Class Library FEDM is the introduction of an organizational principle for all OBID® Reader
families which allows you to create similar program structures for all OBID® Readers regardless of
the reader you are using. The libraries for Java and .NET adopt this architecture. These libraries
provide the first time persistence of data (e. g. Reader’s configuration data as well as data from
Transponders).

In spite of the uniform organizational principle, the view of the storable reader and transponder
data is still at a very low level. This means that as a programmer you are confronted with reader
parameters in bits and bytes and are offered transponder data only in the form of unorganized data
guantities. The advantage of this is that you have access to everything, but on the other hand you
have to carry out multiple operations in sequence if you want for example to write just a small
amount of data to a transponder. Additional simplification with respect to abstraction of data
streams and actions remains reserved for a higher-order module layer.

High-level methods in the reader class simplify the reader communication (e. g. ReadReaderInfo,
ReadReaderDiagnostic, ReadCompleteConfiguration, Taglnventory, TagSelect, etc.) while the

FEIG ELECTRONIC GmbH Seite 17 (von 104) Tutorial.docx

OBID® Tutorial

concept of TagHandler classes provides an efficient programming model for Transponder
communication in the Host-Mode with a collection of proxy classes for a wide range of
Transponder standards (ISO 14443, 1SO 15693, EPC Class 1 Gen 2) as well as specific Chip
types. Each TagHandler class offers a specific API for the identified Transponder type.

OBID i-scan® and OBID® classic-pro Reader have included Transponder commands which can
transport data of multiple Transponders (Host-Mode, Buffered-Read-Mode, Notification-Mode) with
one command and require the storage in tables in a structured form. The class libraries support
this requirement with table classes and a query interface.

The class libraries offer a simple way of serializing data for the reader configuration. This makes it
possible to store a complete reader configuration in an XML file, load it again later and transfer it to
the reader.

FEIG ELECTRONIC GmbH Seite 18 (von 104) Tutorial.docx

OBID® Tutorial

3.4. Custom-Applications in the Reader

Some OBID i-scan® Reader have included a processor module, called Application and Connectivity
Controller (ACC), to support onboard custom specific applications. The operating system is
embedded Linux. Typically C++ is used as the preferred and most performant programming
language and GCC as compiler. FEIG offers special Software Development Kits (SDKs) with a
complete Toolchain.

The special thing about this SDK is the containment of almost all previous discussed and cross-
compiled FEIG libraries so that the application programming inside the Reader differs not from
outside the Reader.

The figure below (Fig. 2) pictures the principal internal software architecture for the OBID i-scan®
UHF-Reader ID ISC.LRU3000, which is identical for all other Readers with an ACC onboard.

Writing embedded applications is ambitious and developers should be familiar with Linux and with
the Gnu Compiler Collection (GCC). In view of the limited system resources (memory, no hard
disk) the design of an embedded application should be more static to prevent increasing memory
consumption during runtime.

RF-Controller ACC with Linux2.6

Customers FEI5

C++ Application Libraries
I
CilEtomers

FEIG Libmries i .
Custorme rs Litm ries Librarie=

IP; 127000 1510041

RF-Controller

Frmware Main C++ Application

FEI5
ACC

Libraries

Fig 2: ACC Software Architecture

FEIG ELECTRONIC GmbH Seite 19 (von 104) Tutorial.docx

OBID® Tutorial

4. Overview of all Libraries

The following overview is for a quick introduction. A detailed description of each library can be
found in the particular document.

4.1. Function Libraries

4.1.1. FECOM
Bl
= =
=

The transport layer library FECOM (= FEIG COMmunication) encapsulates all the functions and
parameters which the user needs in order to manage one or more serial ports open at the same
time. These ports are independent from each other and can be used simultaneously. Event
handling mechanisms can be installed individually for each control lines of any opened port (e.g.
CTS).

The API is identical for all Operating Systems and contains functions for managing of Serial Ports,
communication functions and some more helper functions.

A selection of the important functions:

int FECOM_OpenPort(char* cPortNr)

int FECOM_ClosePort(int iPortHnd)

int FECOM_GetPortPara(int iPortHnd, char* cPara, char* cValue)

int FECOM_SetPortPara(int iPortHnd, char* cPara, char* cValue)

int FECOM_GetErrorText(int iErrorCode, char* cErrorText)

int FECOM_Transceive(int iPortHnd, unsigned char* cSendProt, int iSendLen, unsigned char* cRecProt, int iRecLen)

int FECOM_Transmit(int iPortHnd, unsigned char* cSendProt, int iSendLen)

int FECOM_Receive(int iPortHnd, unsigned char* cRecProt, int iRecLen)

FEIG ELECTRONIC GmbH Seite 20 (von 104) Tutorial.docx

OBID® Tutorial

4.1.2. FEUSB

FEURRDLL Betlabr i

r X —
i3

(VTR | Traiter-mamager i
| L
ey
R i
(T

—
.)
.
|

w CEVICE-OBE KL
FeT Fas—

The transport layer library FEUSB (= FEIG USB) manages multiple connections to USB-Readers.
These connections are independent from each other and can be used simultaneously. An event
handling mechanisms for plug’n play can be installed.

The API is identical for all Operating Systems and contains functions for managing of USB
connections, communication functions and some more helper functions.

The first step in establishing a connection with an USB-Reader is to detect (scan procedure) one or
all USB-Readers on the USB of the PC. Each found device is entered in the internal scan list but
not opened. Before the first communication a USB-Reader must be selected from the scan list and
the function FEUSB_OpenDevice is used to open a channel to this Reader.

A selection of the important functions:

int FEUSB_Scan(int iScanOpt, FEUSB_SCANSEARCH* pSearchOpt)

int FEUSB_ScanAndOpen(int iScanOpt, FEUSB_SCANSEARCH* pSearchOpt)

int FEUSB_OpenDevice(long nDevicelD)

int FEUSB_CloseDevice(int iDevHnd)

int FEUSB_GetDevicePara(int iDevHnd, char* cPara, char* cValue)

int FEUSB_SetDevicePara(int iDevHnd, char* cPara, char* cValue)

int FEUSB_GetLastError(int iDevHnd , int* iErrorCode, char* cErrorText)

int FEUSB_AddEventHandler(int iDevHnd, FEUSB_EVENT_INIT* pInit)

int FEUSB_DelEventHandler(int iPortHnd, FEUSB_EVENT_INIT* plnit)

int FEUSB_Transceive(int iDevHnd, char* cInterface, int iDir, unsigned char* cSendData, int iSendLen, unsigned* cRecData, int iRecLen)

int FEUSB_Transmit(int iDevHnd, char* cInterface, unsigned char* cSendData, int iSendLen)

int FEUSB_Receive(int iDevHnd, char* cInterface, unsigned char* cRecData, int iRecLen)

FEIG ELECTRONIC GmbH Seite 21 (von 104) Tutorial.docx

OBID® Tutorial

4.1.3. FETCP

EETCP

Socket-Objekt

Treiber-Manager i
ket Treiber 19216811
 arametsr

- Liste der SocketHandle I:

‘Socket-Objekt.

Treiber
o

- Parameter

Socket-Objekt

e Treiber |, f1c7 16510
Peametr

The transport layer library FETCP (= FEIG TCP) manages multiple TCP/IP (IPv4) connections over
LAN or WLAN. These connections are independent from each other and can be used
simultaneously.

The API is identical for all Operating Systems and contains functions for managing of TCP/IP
connections, communication functions and some more helper functions.

A selection of the important functions:

int FETCP_Connect(char* cHostAdr, int iPortNr)

int FETCP_DisConnect(int iSocketHnd)

int FETCP_GetSocketPara(int iPortHnd, char* cPara, char* cValue)

int FETCP_SetSocketPara(int iPortHnd, char* cPara, char* cValue)

int FETCP_GetErrorText(int iErrorCode, char* cErrorText)

int FETCP_Transceive(int iPortHnd, unsigned char* cSendProt, int iSendLen, unsigned char* cRecProt, int iRecLen)

int FETCP_Transmit(int iPortHnd, unsigned char* cSendProt, int iSendLen)

int FETCP_Receive(int iPortHnd, unsigned char* cRecProt, int iRecLen)

FEIG ELECTRONIC GmbH Seite 22 (von 104) Tutorial.docx

OBID® Tutorial

4.1.4. FEISC

B

The library FEISC (= FEIG OBID i-scan®) is part of the second level of a hierarchical structured,
multi-tier FEIG library stack. It is only designed for executing Reader commands over the low-level
protocol layer (build/split of frames, check of CRC, check of frame length). Together with transport
layer libraries FECOM, FETCP and FEUSB, this makes it possible to run all the protocols in the
system manual of the OBID i-scan® - or OBID® classic-pro Reader Family directly by invoking a
function.

Multiple Readers can be handled independent from each other and can be used simultaneously.

Optional, the library support encrypted data transmission over Ethernet (TCP/IP), if this feature is
implemented in the Reader firmware.

For analyzing or visualizing the protocol exchange, the library has implemented a logging
mechanism for transferring protocol strings into a file or sending the protocol string to an
application.

The API is identical for all Operating Systems and contains functions for managing of Reader
objects, communication functions and some more helper functions.

A selection of the important functions:

int FEISC_NewReader(int iPortHnd)

int FEISC_DeleteReader(int iReaderHnd)

int FEISC_GetReaderList(int iNext)

int FEISC_GetReaderPara(int iReaderHnd, char* cPara, char* cValue)

int FEISC_SetReaderPara(int iReaderHnd, char* cPara, char* cValue)

int FEISC_GetErrorText(int iErrorCode, char* cErrorText)

int FEISC_GetStatusText(unsigned char ucStatus, char* cStatusText)

int FEISC_AddEventHandler(int iReaderHnd, FEISC_EVENT_INIT* pInit)

int FEISC_DelEventHandler(int iReaderHnd, FEISC_EVENT_INIT* plnit)

int FEISC_StartAsyncTask(int iReaderHnd, int iTaskID, FEISC_TASK_INIT* plnit, void* pInput)

int FEISC_CancelAsyncTask(int iReaderHnd)

int FEISC_Ox63_CPUReset(int iReaderHnd, unsigned char cBusAdr)

int FEISC_Ox66_ReaderInfo(int iReaderHnd, unsigned char cBusAdr, unsigned char cMode, unsigned char* cInfo, int iDataFormat)

int FEISC_Ox69_RFReset(int ReaderHnd, unsigned char cBusAdr)

int FEISC_Ox6A_RFOnOff(int iReaderHnd, unsigned char cBusAdr, unsigned char cRF)

int FEISC_0x72_SetOutput(int iReaderHnd, unsigned char cBusAdr, unsigned char cMode, unsigned char cOutN, unsigned char* pRecords)

int FEISC_0x74_ReadInput(int iReaderHnd, unsigned char cBusAdr, unsigned char* cinput)

int FEISC_0x80_ReadConfBlock(int iReaderHnd, unsigned char cBusAdr, unsigned char cConfAdr, unsigned char* cConfBlock, int iDataFormat)

int FEISC_0x81_WriteConfBlock(int iReaderHnd, unsigned char cBusAdr, unsigned char cConfAdr, unsigned char* cConfBlock, int iDataFormat)

int FEISC_0x83_ResetConfBlock(int iReaderHnd, unsigned char cBusAdr, unsigned char cConfAdr)

int FEISC_OxAO_RdLogin(int iReaderHnd, unsigned char cBusAdr, unsigned char* cRd_PW, int iDataFormat)

FEIG ELECTRONIC GmbH Seite 23 (von 104) Tutorial.docx

OBID® Tutorial

int FEISC_OXAE_ReaderAuthent(int iReaderHnd, unsigned char cBusAdr, unsigned char cMode, unsigned char cKeyType, unsigned char cKeyLen,
unsigned char * cKey, int iDataFormat)

int FEISC_OxB0_ISOCmd(int iReaderHnd, unsigned char cBusAdr, unsigned char* cReqData, int iReglLen, unsigned char* cRspData, int* iRspLen,
int iDataFormat)

int FEISC_Ox22_ReadBuffer(int iReaderHnd, unsigned char cBusAdr, int iSets, unsigned char* cTrData, int* iRecSets, unsigned char*
cRecDataSets, int iDataFormat)

FEIG ELECTRONIC GmbH Seite 24 (von 104) Tutorial.docx

OBID® Tutorial

4.1.5. FETCL

Transponder Object
Objekt-Manager . e onpt Forospt
ey — }-—~

0@

Smaiimds ||| memercopct],_, PortObket

Reader Object

e e DevenOaict
==]

The library FETCL (= FEIG T=CL) contains high-level functions for the exchange of APDUs
(Application Data Unit Protocol) with ISO 14443-4 compliant Transponders over the T=CL protocol.
In principle, multiple APDUs can be handled independent from each other and can be executed
simultaneously with different Transponders, if each Reader deals with only one APDU.

The functions in FETCL are responsible only for internal administration, T=CL protocol cycle
handling, like split of uplink data and response data collection and any necessary error outputs.
Every other 1ISO14443 commands, like Inventory, Select or Halt must be executed with FEISC.

The API is identical for all Operating Systems and contains functions for managing of Transponder
objects, communication functions and some more helper functions.

A selection of the important functions:

int FETCL_NewTransponder(int iReaderHnd, unsigned char ucBusAdr, unsigned char ucCid, unsigned char ucNad, bool bUseCid, bool bUseNad)

int FETCL_DeleteTransponder(int iTrpHnd)

int FETCL_GetErrorText(int iErrorCode, char* cErrorText)

int FETCL_APDU(int iTrpHnd, unsigned char* ucData, int iDataLen, FETCL_EVENT_INIT* pinit)

int FETCL_GetResponseData(int iTrpHnd, unsigned char* ucData, int iDataBufLen)

int FETCL_Ping(int iTrpHnd)

int FETCL_Deselect(int iTrpHnd)

FEIG ELECTRONIC GmbH Seite 25 (von 104) Tutorial.docx

OBID® Tutorial

4.1.6. FEFU

EEELD) EEISCOLL EECOWD)

|
[FEFTSrmrarta
) (—— e
[FEF Lot e
[ERiemden |
|

[FEFLITI Cavtreraon
[T |
=

The library FEFU (= FEIG Function Unit) incorporates for the programmer all the necessary
functions for easy communication with external Function Units that are accessed by Readers in the
OBID i-scan® family. The picture on the right side shows the chain of communication within and
outside the host.

Multiple Function Units can be handled, but only one communication at the same time can be
executed.

The API is identical for all Operating Systems and contains communication functions and some
more helper functions.

Function list:

int FEFU_GetErrorText(int iErrorCode, char* cErrorText)

int FEFU_GetStatusText(unsigned char ucStatus, char* cStatusText)

int FEFU_MUX_Detect(int iReaderHnd, unsigned char ucReaderBusAdr, unsigned char ucMuxAdr)

int FEFU_MUX_SoftVersion(int iReaderHnd, unsigned char ucReaderBusAdr, unsigned char ucMuxAdr, unsigned char* ucVersion)

int FEFU_MUX_SelectChannel(int iReaderHnd, unsigned char ucReaderBusAdr, unsigned char ucMuxAdr, unsigned char ucinl, unsigned char
ucin2)

int FEFU_DAT_Detect(int iReaderHnd, unsigned char ucReaderBusAdr, unsigned char ucDatAdr)

int FEFU_DAT_GetValues(int iReaderHnd, unsigned char ucReaderBusAdr, unsigned char ucDatAdr, unsigned char* ucValues)

int FEFU_UMUX_Detect_GetPower(int iReaderHnd, unsigned char ucReaderBusAdr, unsigned char ucMuxAdr, unsigned char ucFlags, unsigned

char* ucData)

int FEFU_UMUX_SelectChannel(int iReaderHnd, unsigned char ucReaderBusAdr, unsigned char ucMuxAdr, unsigned char ucFlags, unsigned char
ucChannelNo)

int FEFU_UMUX_SoftVersion(int iReaderHnd, unsigned char ucReaderBusAdr, unsigned char ucMuxAdr, unsigned char ucFlags, unsigned char*
ucVersion)

FEIG ELECTRONIC GmbH Seite 26 (von 104) Tutorial.docx

OBID® Tutorial

4.2. Class Libraries

4.2.1. FEDM

base class

FEDM_Base *

abstract base class helper classes Transponder classes

- Reader class FEDM_ISOTabitem }—[FedmiscTagHandler]
High-Level
Reader class

O ()

library constants helper functions

Tonly C++ Zin C#, Java: FedmiscReader

The C++ class library FEDM (FEIG Data Modul) offers a comfortable API for RFID-Readers and —
Transponders and should be the best choice for C++ programmers.

Primarily in the year 2000, the library was designed for five, completely different RFID product
families with different binary communication protocols to unify the high-level handling with OBID®-
Readers. Since then, the library is permanently developed and specialized for the OBID i-scan®
and OBID® classic-pro Reader family. A lot of operations can be realized with few code lines by
using the high-level Reader class and since 2009/2010 by using Transponder classes.

The library is permanently in development and the support for new Readers will be added in short
terms, because of building the basic for the FEIG applications [ISOStart/CPRStart and

FirmwareUpdateTool.

The principle method of operation oft he Reader class can be clearly seen in the following
illustration.

SetData

GetData
SetTableData
GetTableData

SetConfigPara
GetConfigPara

Y

FindTablelndex

SetTableSize

R
Y

EEData RAMData TMPData m_ISOTable

FEDM_ISCReader

Serialize

XML File 'O

The horizontal axis shows the control flow that is generated by the SendProtocol method, the only
communication method. It independently retrieves all the necessary data from the integrated data
containers before transmitting the send protocol and stores the received protocol data there as
well. This means the application must write all the data necessary for this protocol to the
corresponding data containers in the correct locations before invoking the SendProtocol. Likewise
the receive data are stored at particular locations in corresponding data containers. The manual for

FEIG ELECTRONIC GmbH Seite 27 (von 104) Tutorial.docx

OBID® Tutorial

FEDM (Part B.ISC) contains examples for each Reader command and the following sections
demonstrate also a lot of more complex examples.

High-level methods like ReadReaderInfo combine multiple actions and reduce the number of code
lines.

The concept of TagHandler classes provides a new library part for more efficient programming with
different transponder types. TagHandler classes can be used only when the Reader works in Host-
Mode.

The concept is based on the automatic identification of the type of the transponder after a
successful inventory. With ISO 15693 compliant transponders the manufacturer ID and the chiplD,
which are part of the serial number, are evaluated. With 1SO 14443 compliant transponders the
type of the TagHandler can be determined after a mandatory Select command based on the
returned Card-Info or, in case of the explicit selection of atransponder driver with the Select
command, the transponder driver selects the type of the TagHandler.

All TagHandler classes are derived from the base class FedmlscTagHandler. Furthermore, the
relationship between the different transponder types is mapped to derivations between TagHandler
classes.

A selection of the important high-level methods of the reader class:

int ConnectCOMM(int iPortNr)

int ConnectTCP(char* cHostAdr, int iPortNr)

int ConnectUSB(unsigned long dwDevicelD)

int DisConnect()

int ReaderAuthentication(unsigned char ucAuthentType, string sAuthentKey);

FEDM_ISC_READER_INFO* ReadReaderInfo(unsigned int uiProtocolFrame)

FEDM_ISC_READER_DIAGNOSTIC* ReadReaderDiagnostic()

int ReadCompleteConfiguration(bool bEEPROM)

int WriteCompleteConfiguration(bool bEEPROM)

int ResetCompleteConfiguration(bool bEEPROM)

int ApplyConfiguration(bool bEEPROM)

int Serialize(bool bRead, char* sFileName)

int TransferXmlIFileToReaderCfg(char* sFileName)

int TransferReaderCfgToXmlFile(char* sFileName)

int StartAsyncTask(FEDM_TASK_INIT* pinit)

int SendProtocol(unsigned char ucCmdByte)

FEDM_ISC_TAG_LIST* TagInventory(bool bAll,unsigned char ucMode, unsigned char ucAntennas)

FedmlscTagHandler* TagSelect(FedmlscTagHandler* pTagHandler, unsigned int uiTagDriver)

FEDM_ISC_TAG_LIST* GetTagList()

FedmlscTagHandler* GetTagHandler(string sSnr)

FedmlscTagHandler* GetSelectedTagHandler()

FEDM_ISOTabltem* GetISOTableltem(unsigned int uildx)

FEDM_BRMTabltem* GetBRMTableltem(unsigned int uildx)

int GetConfigPara(string sParaName, <Typ> Data, bool bEEPROM)

int SetConfigPara(string sParaName, <Typ> Data, bool bEEPROM)

int GetData(const char* ID, <Typ> Data)

int SetData(const char* ID, <Typ> Data)

int GetTableData(int ildx, unsigned int uiTablelD, unsigned int uiDatalD, <Typ> Data)

int SetTableData(int ildx, unsigned int uiTablelD, unsigned int uiDatalD, <Typ> Data)

int FindTableIlndex(int iStartldx, unsigned int uiTablelD, unsigned int uiDatalD, <Typ> Data)

FEIG ELECTRONIC GmbH Seite 28 (von 104) Tutorial.docx

OBID® Tutorial

4.2.2. OBIDISC4J and OBIDISC4ANET

The Java libray OBIDISC4J and the .NET library OBIDISC4NET are built upon the C++ class
library FEDM. This means, that the most methods are realized in C++ and wrapped into the Java
or .NET Reader class. Nevertheless, the full functionality of the C++ class library is accessible for
Java or the .NET Framework and results in a similar API.

FEIG ELECTRONIC GmbH Seite 29 (von 104) Tutorial.docx

OBID® Tutorial

4.3. Thread security

In principle, all FEIG libraries are not fully thread safe. But respecting some guidance, a practical
thread security can be realized allowing parallel execution of communication tasks. One should
keep in mind that all OBID® RFID-Reader works synchronously and can perform commands only in
succession.

On the level of the transport layer (FECOM, FEUSB, FETCP) the communication with each port
must be synchronized in the application, as the Reader works synchronously. Using multiple ports
and so multiple Readers from different threads simultaneously is possible, as the internal port
objects acts independently from each other. But it is not possible to communicate independently
from different threads with different Readers over one serial port of type RS485 or RS422. Yet
another limitation concerns the Scan function of FEUSB library. The scan over the complete USB
cannot be thread-safe, as a global kernel action is performed. To prevent mutual interactions, the
opening and closing of serial and USB connections must be serialized on application side.

On the level of the protocol layer (FEISC), parallelism can be realized only when each Reader
object represents exactly one physical Reader and is bound with an individual communication port.
This is not true for the four specialized functions FEISC BuildxxProtocol and
FEISC_SplitxxProtocol, which use an internal global buffer for protocol data.

The library FEFU has no precautions for thread-safeness implemented. Thus, only one thread can
call FEFU functions at the same time. Thread-safeness must be implemented on application side.

The library FETCL for ISO 14443-4 compliant Transponders is thread-safe, only when each
Transponder object is connected with a different Reader object and only one APDU is exchanged
with each Reader at the same time. Even if the function FETCL_Apdu can be called
asynchronously, this means not, that multiple calls of FETCL_Apdu to the same Transponder
object are allowed. APDUs are not stored in a stack.

On the level of the class libraries FEDM, OBIDISC4J and OBIDISCANET parallelism can be
realized when with each Reader object only one method call is performed. Thread-safeness for
each Reader object must be implemented on application side. Parallelism with non-synchronized
opening and closing of serial and USB ports (ConnectCOMM, ConnectUSB) must be avoided.
When Function Units are integrated in an application, keep in mind that only one FunctionUnit
object can be used at the same time, even if the Function Units are connected on different
Readers, as the underlying library FEFU is not thread-safe.

FEIG ELECTRONIC GmbH Seite 30 (von 104) Tutorial.docx

OBID® Tutorial

5. Error Handling

One of the most important, but likely unattended theme is the error handling. With each received
protocol, OBID® RFID-Readers signals with the Status byte the result of the last operation (see
2.3. Transmission Protocol). Every Status byte is listed in the system manual of each Reader.

Beginning with the protocol layer (FEISC), the Status byte is returned with each communication
function and have to be checked in the application. An operation with the Reader was successful,
if the return value is 0, which equates the Status OK. Positive return values relates to the Status
byte from the last operation. Negative return values signal an error condition inside the library
stack.

The error codes for the class libraries (C++, C#,

C# or Java class Java) and the function libraries are organized into
retrieves error codes f.rom .
oo el ot CtmmEiene sectors such that they cannot overlap. The following
Error Code . .
call ranges are reserved for the libraries:
C++ class
FEDM_ISCReaderModule Iﬁ retrieves error codes from
C functions
EI'[DFCDCIE(}Call
FETCP Function Call C function
Library Value range for error codes | Reference
FEDM, OBIDISC4J, OBIDISCANET -101 ... -999 H10102-xx-ID-B, H31101-xx-ID-B, H40301-xx-ID-B
FECOM -1000...-1099 H80592-xx-ID-B
FEUSB -1100...-1199 H00501-xx-ID-B
FETCP -1200...-1299 H30802-xx-ID-B
FEISC -4000...-4099 H9391-xx-ID-B
FEFU -4100...-4199 H30801-xx-ID-B
FETCL -4200...-4299 H50401-xx-ID-B

Calling the method GetStatusText() returns a text corresponding to the sent status byte.
Calling the method GetErrorText() returns a text corresponding to the sent error code, which
may also come from the function library FEISC or the underlying communication library FECOM,
FETCP or FEUSB.

One of the commonly raised error is the communication timeout caused by too long operation time
in the RFID-Reader or too small timeout setting in the library (transport layer). As a general rule,
the communication timeout should be set to 5 seconds and only be increased, if the Reader is
configured to remain for a longer time (> 5 seconds) in the RF communication with the parameter
Airinterface.TimeLimit (Transponder Response Time). The communication timeout must
always be larger than the setting in Airinterface.TimeLimit.

FEIG ELECTRONIC GmbH Seite 31 (von 104) Tutorial.docx

OBID® Tutorial

6. General preliminary notes to the sections

For your better orientation, the source code snippets in the sections are placed in colored boxes
and signed with symbols for the programming languages:

&

C/C++ examples in a sand colored box. The snippets are for the C++ class library
FEDM. If possible, an alternative snipped is boxed separately with exclusive use of the
C function libraries.

Java examples in a violet box.

C# examples in a green box (with the implicit use for Windows and Windows CE /
Windows Compact).

If some examples relate to a specific operating system, the boxes are signed with the following
symbols:

A Windows and Windows CE / Windows Compact

Windows®,

Windows CE / Windows Compact

Linux (also embedded Linux)
INUX

Examples without an operating system symbol are universal.

For reasons of clarity the processing of the return values of the methods is not shown here. Of
course it should always be included in applications.

The label reader represents an object of type FEDM_ISCReaderModule (C++) or FedmiscReader
(Java, .NET).

All method names in this Tutorial begin with a capital letter, although methods in Java begin with
lower-case.

FEIG ELECTRONIC GmbH Seite 32 (von 104) Tutorial.docx

OBID®

Tutorial

7. Section 1: Basic initializations

Some values or instance of classes have to be hold in the application. By exclusive use of the
function libraries, this might be the Port Handle as the return value of FECOM_OpenPort,
FEUSB_OpenDevice and FETCP_Connect and the Reader Handle as the return value of
FEISC_NewReader. In object oriented applications (C++, C#, Java) we recommend to instantiate
for each physical RFID-Reader one reader instance, which remains the complete application run-
time or as long the connection is established.

Before using the reader object (C++, C#, Java) for the first time, some initializing must be

performed:

1. Bus address

2. Reader type

3. Table size

4. TagHandler-Support
(only C++)

The bus address for the Reader is preset in the class for 255. To set a
different address, use the SetBusAddress method.

Note: The bus address is only relevant for the communication over the
serial port.

The reader type must be set in the reader class with one of two options:

1. The call of the method ReadReaderinfo after a successful
connection (recommended).

2. Set of reader type with the method SetReaderType. The constants
of all reader types are listed in the file FEDM_ISC.h (C++), in the
class FedmliscReaderConst (Java) and in the structure
FedmlscReaderConst (.NET).

The integrated tables for Buffered Read Mode (BRM) and ISO Host
Mode are not initialized. Before the initial communication, you must set
the table size using the method SetTableSize. The size is selected
equal to the maximum number of transponders located in the antenna
field at the same time.

Only the size of the table actually being used needs to be set.

The support for TagHandler classes is disabled by default. If
TagHandler classes are used in an application, the support must be
enabled with the method EnableTagHandler.

FEIG ELECTRONIC GmbH Seite 33 (von 104) Tutorial.docx

OBID®

Tutorial

FEDM
#include FedmlscCore.h
FEDM_1SCReaderModule reader;

// set a proper busaddress (only for communication over serial port)
reader .SetBusAddress(1); // or other proper bus address

// set of table size
// use the same method with FEDM_ISC_BRM_TABLE when programming for Buffered-Read-Mode
reader .SetTableSize(FEDM_ISC_ISO_TABLE, 100); // max. 100 Tags per Inventory in Host-Mode

// we want to use TagHandler support
reader .EnableTagHandler (true);

// set of Reader-Type after a successful connection
reader .ReadReaderInfo();

FECOM and FEISC

#include fecom.h // and/or feusb.h and/or fetcp.h
#include feisc.h

int iPortHandle = 0;

int iReaderHandle 0;

import de.feig.*;
FedmlscReader reader = new FedmlscReader();

// set a proper busaddress (only for communication over serial port)
reader .setBusAddress(1); // or other proper bus address

// set of table size
// use the same method with FEDM_ISC_BRM_TABLE when programming for Buffered-Read-Mode
reader .setTableSize(FEDM_ISC_ISO_TABLE, 100); // max. 100 Tags per Inventory

// the Reader-Type is set automatically with the connectXXX method

Cit
using OBID;
FedmlscReader reader = new FedmlscReader();

// set a proper busaddress (only for communication over serial port)
reader .SetBusAddress(1); // or other proper bus address

// set of table size
// use the same method with FEDM_ISC_BRM_TABLE when programming for Buffered-Read-Mode
reader .SetTableSize(FedmlscReaderConst.FEDM_ISC_ISO_TABLE, 100); // max. 100 Tags per Inventory

// the Reader-Type is set automatically with the ConnectXXX method

FEIG ELECTRONIC GmbH Seite 34 (von 104) Tutorial.docx

OBID® Tutorial

8. Section 2: Establish a connection to the Reader

This section gives an introduction to the operations for establishing a connection to the RFID-
Reader.

8.1. Serial Port (RS232 / RS485 / RS422)

A singular resource and under control of the operating system is the serial port, which can be
opened once. The serial interface can handle only one protocol at the same time. Parallelism is
therefore not realizable. After opening, a serial port must be configured to adjust the transmission
parameters to the connected RFID-Reader.

In the following example the port COM1 (Linux: ttyS0) is opened, the baud rate is set to 38400 and
the frame to 8E1 (8 data bits, even parity, 1 stop bit). The timeout is 1000ms by default. It must be
increased, if the response time of some Reader commands is larger.

@ FEDM
int back = reader.ConnectCOMM(1);

if(back == 0)
{
// search for the connected Reader
// the port parameters and the protocol frame (Standard or Advanced) will be set properly internal
back = reader.FindBaudRate();
if(back = 0)
{

// Reader detected
reader .SetPortPara(''Timeout', '"5000"); // 5s timeout

}

EECOM and FEISC

int back = 0;
int iPortHandle = 0;
int iReaderHandle = 0;

iPortHandle = FECOM_OpenPort("1");

if(iPortHandle > 0)

{
FECOM_SetPortPara(iPortHandle, "Baud', ''38400); // or other proper baud rate
FECOM_SetPortPara(iPortHandle, "Frame™, "8E1"); // or other proper frame

// create new Reader object and connect with COM1 Port object in FECOM
iReaderHandle = FEISC_NewReader (iPortHandle);
if(iReaderHandle > 0)

{
// for most OBID® Reader (not for ISC.MR/PR/PRH100, ISC.LR200, ISC.MO2, CPR.MO2, CPR.02,
// CPR.04)
FEISC_SetReaderPara(iReaderHandle, "FrameSupport™, "Advanced™);
// search for the connected Reader
// with busaddress 255 each Reader is answering
back = FEISC_0x52_GetBaud(iReaderHandle, 255);
if(back = 0)
{
// Reader detected
FECOM_SetPortPara(iPortHandle, "Timeout'™, "5000"); // 5s timeout
3
¥

FEIG ELECTRONIC GmbH Seite 35 (von 104) Tutorial.docx

OBID®

Tutorial

import de.feig.*;

try

{
// search for the connected Reader
// the port parameters will be set properly internal with FindBaudRate()
// use parameter with Detect=true only, if the Reader is normally connected
reader .connectCOMM(1, true);
// Reader detected
reader .setPortPara(' Timeout™, "5000"); // 5s timeout

¥

catch (Exception ex)

{

3

C#

using OBID;

try

{
// search for the connected Reader
// the port parameters will be set properly internal with findBaudRate()
// use parameter with Detect=true only, if the Reader is normally connected
reader .ConnectCOMM(1, true);
// Reader detected
reader.SetPortPara("timeout’, ""5000");

3

catch (Exception ex)

{

3

FEIG ELECTRONIC GmbH Seite 36 (von 104)

Tutorial.docx

OBID® Tutorial

8.2. Bluetooth

For Windows and Windows CE, OBID® RFID-Readers with Bluetooth interface are connected at a
virtual serial port (e.g. COM15) and with Linux as a /dev/rfcomm device.

The Bluetooth interface is a singular resource and under control of the operating system. It can be
opened once and handle only one protocol at the same time. Parallelism is therefore not realizable.
After opening, a Bluetooth interface must not be configured.

In the following example the port COML1 (Linux: /dev/rfcomm1) is opened. The timeout is 1000ms
by default. It must be increased, if the response time of some Reader commands is larger.

Note: For Windows and Windows CE there are no modifications against the handling of serial
ports. Linux programmers have to adjust the device name first.

FEDM

// same operations as for serial ports

EECOM and FEISC

// same operations as for serial ports

FEDM
int back = 0;

i} // adjust device name
Linux® reader .SetPortPara("'PortPrefix’, "/dev/rfcomm™);
back = reader.ConnectCOMM(1); // opens dev/rfcommO0 and not /dev/rfcomml !!
// reset device name to default
reader .SetPortPara('PortPrefix”, "/dev/ttyS");
if(back == 0)
{
// search for the connected Reader
back = reader.FindBaudRate();
if(back = 0)
{
// Reader detected
reader .SetPortPara(''Timeout', '"5000"); // 5s timeout

}

FECOM and FEISC

int back = 0;
int iPortHandle = 0;
int iReaderHandle = 0;

// adjust device name

FECOM_SetPortPara(0, "PortPrefix”, */dev/rfcomm™);

iPortHandle = FECOM_OpenPort(**'1""); // opens dev/rfcomm0 and not /dev/rfcomml !!

// reset device name to default

FECOM_SetPortPara(0, "PortPrefix”, "/dev/ttyS");

if(iPortHandle > 0)

{
FECOM_SetPortPara(iPortHandle, "Baud', ''38400"); // proper setting for Bluetooth
FECOM_SetPortPara(iPortHandle, "Frame™, "8E1"); // proper setting for Bluetooth

// create new Reader object and connect with /dev/rfcommO Port object in FECOM
iReaderHandle = FEISC_NewReader (iPortHandle);

if(iReaderHandle > 0)

{

FEIG ELECTRONIC GmbH Seite 37 (von 104) Tutorial.docx

OBID® Tutorial

// for all OBIDY Reader with Bluetooth interface
FEISC_SetReaderPara(iReaderHandle, "FrameSupport™, "Advanced™);
// search for the connected Reader
// with busaddress 255 each Reader is answering
back = FEISC_O0x52_GetBaud(iReaderHandle, 255);
if(back = 0)
{
// Reader detected
FECOM_SetPortPara(iPortHandle, "Timeout'™, "5000"); // 5s timeout

// same operations as for serial ports

import de.feig.*;
try

{
i} // search for the connected Reader

Linux® // the port parameters will be set properly internal with findBaudRate()
// use parameter with Detect=true only, if the Reader is normally connected
reader .connectBT(1, true); // opens dev/rfcommO and not /dev/rfcomml !!
// Reader detected
reader .setPortPara("'Timeout™, "5000); // 5s timeout

¥

catch (Exception ex)

{
3

c#

// same operations as for serial ports

FEIG ELECTRONIC GmbH Seite 38 (von 104) Tutorial.docx

OBID® Tutorial

8.3. USB

OBID® RFID-Reader with USB-Interface requires for Windows and Windows CE a FEIG Kernel-
Driver and for Linux and Mac OS X the Open-Source library libusb must be installed.

USB is a single-master bus with the PC as master (host). Only this master can generate protocol
activities. Up to 127 physical devices can be supported at the same time. The devices differ in their
bus addresses, which are automatically assigned by the host. After a peripheral is plugged in, an
initialisation phase (enumeration) is automatically started in the host which allows the host to load
the appropriate driver(s). This process is always triggered by the operating system.

In physical terms a USB device always consists of at least one logical USB device. This means the
communication data can be stacked within the device into several information channels, the so-
called pipes. Each pipe has an endpoint assigned to it which corresponds physically to a FIFO.

A logical USB device can combine several pipes into an interface, and the host can install an
appropriate driver for such an interface. The host obtains the information about the logical
composition of a USB device during enumeration.

USB devices from the OBID® Reader families are characterized in that they all have uniform
interfaces. This means the special USB drivers can be categorized as device-independent within
the OBID® Reader families. The programmer does not however come into contact with these
drivers, interfaces, pipes or bus addresses. For him a programming model has been developed
which enables communication with OBID® USB devices in no more than four steps.

1. Scan process: A function invoke detects all OBID® devices on the USB and administers them
in a scan list within the DLL.

2. Device selection: In the second step this scan list is used to select a USB device based on its
serial number (Device-ID). The serial number is by the way the only feature which distinguishes
the devices from each other.

3. Open communications path: In the third step a channel to this USB device is opened. A data
structure, the device object, is created internally in the DLL.

4. Data exchange: Beginning with the fourth step data can be exchanged with the USB device.

In the case of only one USB device from the OBID® Reader families is connected, a special
function/method in the libraries combines steps 1, 2 and 3 together.

FEIG ELECTRONIC GmbH Seite 39 (von 104) Tutorial.docx

OBID® Tutorial

FEDM

int back = 0;
long dwDevicelD = 0;

// detect single Reader (the fist detected will be opened)
back = reader.ConnectUSB(0);
if(back == 0)
{
// Reader detected
b

// alternatively, the USB must be scanned with the function library FEUSB (see below)
// to identify a specific Reader

// detect Reader with specific Device-I1D
// obtain the Device-ID from FEUSB library (see below)
back = reader.ConnectUSB(dwDevicelD);

FEUSB and FEISC

int back = 0;

int iPortHandle = 0;
int iReaderHandle =
long dwDevicelD = 0;
char cDevicelD[16];

0;

// scan USB and open first detected Reader. No search option is used
iPortHandle = FEUSB_ScanAndOpen(FEUSB_SCAN_FIRST, NULL);
if(iPortHandle > 0)

{
// create new Reader object and connect with USB device object in FEUSB
iReaderHandle = FEISC_NewReader (iPortHandle);
if(iReaderHandle > 0)
{ @
// for all OBID® USB-Reader recommended (except for CPR.04-U)
FEISC_SetReaderPara(iReaderHandle, "FrameSupport™, "Advanced™);
¥
3

// alternatively, the USB must be scanned to identify a specific Reader

// scan USB and open e.g. the second USB device. No search option is used
back = FEUSB_Scan(FEUSB_SCAN_ALL, NULL);

if(back == 0)
{
i1T(FEUSB_GetScanListPara(l, "Device-ID", cDevicelD) == 0)
{
sscanf((const char*)cDevicelD, "%Ix", &dwDevicelD);
iPortHandle = FEUSB_OpenDevice(dwDevicelD);
if(iPortHandle < 0)
{
// code here for error
3
else
{
// code here for communication or other
3
3

FEIG ELECTRONIC GmbH Seite 40 (von 104)

Tutorial.docx

OBID® Tutorial

import de.feig.*;

int back = 0;

long devicelD = 0;

String scanListPara;

FeUsb usbHelper = new FeUsb();
FeUsbScanSearch scanSearch = null;

try
{

// detect single Reader (the fist detected will be opened)
reader .connectUSB(0);
// Reader detected

¥

catch (Exception ex)

{
}

// alternatively, the USB must be scanned with the class FeUsb
// to identify a specific Reader

// scan USB and open e.g. the second USB device. No search option is used

try
{
back = usbHelper.scan(FeUsbScanSearch.SCAN_ALL, scanSearch);
if(back == 0)
{
scanListPara = usbHelper.getScanListPara(l, "Device-ID");
devicelD = FeHexConvert.hexStringToLong(scanListPara);
reader .connectUSB(devicelD);
}
}
catch (Exception ex)
{
3

FEIG ELECTRONIC GmbH Seite 41 (von 104)

Tutorial.docx

OBID® Tutorial

C#
using OBID;

int back = 0;

long devicelD = 0;

String scanListPara;

FeUsb usbHelper = new FeUsb(Q);
FeUsbScanSearch scanSearch = null;

try

{

// detect single Reader (the fist detected will be opened)
reader .ConnectUSB(0);
// Reader detected

¥
catch (Exception ex)

{
¥

// alternatively, the USB must be scanned with the class FeUsb
// to identify a specific Reader

// scan USB and open e.g. the second USB device. No search option is used

try
{
back = usbHelper.Scan(FeUsbScanSearch.SCAN_ALL, scanSearch);
if(back == 0)
{
scanListPara = usbHelper.GetScanListPara(l, "Device-1D");
devicelD = FeHexConvert.HexStringToLong(scanListPara);
reader .ConnectUSB(devicelD);
}
}
catch (Exception ex)
{
3

FEIG ELECTRONIC GmbH Seite 42 (von 104)

Tutorial.docx

OBID® Tutorial

8.4. TCP/IP (LAN and WLAN)

The TCP/IP communication interface is a singular resource in the RFID-Reader. It can be opened
once and handles only one protocol at the same time. Parallelism is therefore not realizable. This
singularity is consciously willed, in order to bind a RFID-Reader with only one process.

In the following example a connection to a Reader with the IP-Address 192.168.1.100 and Port
10001 is established.

FEDM

int back = 0;

back = reader.ConnectTCP(*"192.168.1.100", 10001);
if(back == 0)
{
// Reader detected
// call of ReadReaderInfo() necessary -> see 10.1. Reader Information: The method ReadReaderInfo()

}

EETCP and FEISC

int back = 0;
int iPortHandle = 0;
int iReaderHandle = 0;

iPortHandle = FETCP_Connect(''192.168.1.100", 10001);
if(iPortHandle > 0)
{
// create new Reader object and connect with socket object in FETCP
iReaderHandle = FEISC_NewReader (iPortHandle);
if(iReaderHandle > 0)
{ @
// for all OBID” Reader with LAN and WLAN interface recommended
FEISC_SetReaderPara(iReaderHandle, "FrameSupport™, "Advanced™);

import de.feig.*;

try

{
reader .connectTCP(""192.168.1.100", 10001);

// Reader detected
b

catch (Exception ex)

{
}

C#
using OBID;

try

{
reader.ConnectTCP(*'192.168.1.100", 10001);
// Reader detected

3

catch (Exception ex)

{
3

FEIG ELECTRONIC GmbH Seite 43 (von 104) Tutorial.docx

OBID® Tutorial

8.5. Excursion: Secured data transmission with encryption

Some OBID i-scan® and OBID® classic-pro Reader can secure the data transmission over
Ethernet (TCP/IP) with a 256 bit AES algorithm. The Authentication Key (Password) is stored in the
Reader and cannot read back. The crypto mode is disabled by default.

The encrypted data transmission is realized with functions of the Open-Source organization
openSSL (http://www.openssl.org), which are part of the library file libeay32.dll (Windows) rsp.
libcrypto.so (Linux). The binding to the openSSL library file will be affected at runtime with the first
call of an openSSL function. This has the advantage that all applications are freed from the
installation of the openSSL library file if no encrypted data transmission is used. In the case that
encrypted data transmission is used the license issues of openSSL have to be considered.

The encrypted data transmission will be enabled by activating the crypto mode in the Reader
configuration with a following CPU-Reset. After that, the Reader accepts only enciphered
protocols. To get access rights in crypto mode, the first step must be the establishment of a
secured connection, transporting the enciphered password (password contains only nulls by
default), to open a new session. Every successive protocol will then enciphered automatically.

FEDM
int back = 0;

back = reader.ConnectTCP("'192.168.1.100", 10001);
if(back == 0)
{

// Reader detected
back = reader. ReaderAuthentication(2, "MyAuthentKeylnHex); // 1!
if(back == 0)
{
// authenticated
}
b

EETCP and FEISC

int back = 0;
int iPortHandle = 0;
int iReaderHandle = 0;

iPortHandle = FETCP_Connect(''192.168.1.100", 10001);
if(iPortHandle > 0)

{
// create new Reader object and connect with socket object in FETCP
iReaderHandle = FEISC_NewReader (iPortHandle);
if(iReaderHandle > 0)
{ @
// for all OBID® Reader with LAN and WLAN interface recommended
FEISC_SetReaderPara(iReaderHandle, "FrameSupport™, "Advanced™);
// try to authenticate
back = FEISC_OxXAE_ReaderAuthent(iReaderHandle, 255, 0, 2, 32,
"MyAuthentKeylnHex™, 1); // !
if(back == 0)
{
// authenticated
3
ks
3

! The Authent-Key has to be a string with 64 hexadecimal characters, where every two hex characters build
a byte. All 32 bytes together build a AES256-Key

FEIG ELECTRONIC GmbH Seite 44 (von 104) Tutorial.docx

http://www.openssl.org/

OBID®

Tutorial

import de.feig.*;

try
{

reader .connectTCP(*'192.168.1.100", 10001, 2,

// Reader detected and we are authenticated

}

catch (Exception ex)

{
3

"MyAuthentKeylnHex"); // 1!

C#
using OBID;

try
{

reader .ConnectTCP(''192.168.1.100", 10001, 2,

// Reader detected and we are authenticated

}

catch (Exception ex)

{
T

“"MyAuthentKeylnHex'); // *

! The Authent-Key has to be a string with 64 hexadecimal characters, where every two hex characters build
a byte. All 32 bytes together build a AES256-Key

FEIG ELECTRONIC GmbH

Seite 45 (von 104)

Tutorial.docx

OBID® Tutorial

8.6. Excursion: Error handling for TCP/IP communication

TCP/IP based communication is normally easy to realize. But in error cases, the handling is
different from serial or USB based communication.

In the following, we discuss error handling for:

- Communication errors

Errors while establish a connection
Errors while closing the connection
Problem with broken communication link

The method/function calls inside the libraries is important to be considered to understand the
returned error codes or thrown exceptions.

With the principle: the caller reflects the error code
C# or Java class of the called method/function, e.g. a call from C#

retrieves error codes from

Ce+ class and C functions can throw error codes from C++ library and that can
cal return error codes from the protocol layer (FETCP),
C++ class . 4 .
FEDM_lscgeaderMoauleﬁ retrleves error codes from the following tables list the most important error
C functions .
Emmde(}Ca” codes and the recommended error handling. All
other error codes are critical errors, cannot be fixed
at runtime and must be analyzed by the

development team.

Error Code

FETCP Function Call C function

8.6.1. Communication errors

In general, when a communication with the method SendProtocol (C++, Java, .NET) or the
function FETCP_Transceive (C/C++, VB, ...) fails with error codes -1230 (Timeout), -1232 (Error
in read process) or -1237 (error in send process), the connection must be closed at once and
established again.

If a timeout is ignored and another OBID protocol is sent afterwards, the timed out receive protocol
may be received. After this, a displacement of the receive protocol is permanent existent. Only
closing and opening of the connection can fix this situation.

The preset timeout is 3000ms and normally large enough for the most communication tasks. In
rare cases it must be enlarged with the method FEDM_ ISCReaderModule: :SetPortPara
(C++), FedmlscReader .SetPortPara (Java, .NET) or FETCP_SetPortPara.

For ID ISC.LR/LRU Readers: It is mandatory to add a short sleep time of 500-1000 ms between
closing and opening for RFID-Readers with embedded AC-Controller. Otherwise, the connection a)
may fail or b) may be successful, but the first communication may fail.

FEIG ELECTRONIC GmbH Seite 46 (von 104) Tutorial.docx

OBID® Tutorial

8.6.2. Errors while establish a connection

When an error occurs with the method ConnectTCP (C++, Java, .NET) or FETCP_Connect
(C/C++, VB, ...), the error code must be analyzed in detail while error handling.

Function / Method Error code Error handling
Function in transport layer -1211 Timeout for establishing a connection to the TCP/IP server.
Cause may be that another client is blocking the

FETCP_Connect .
- connection.

This is a normal runtime problem. The repetitive call can

be applied until the Server (RFID-Reader) can be

connected.

Other reasons: the RFID-Reader is not powered on or
not switched into the subnet or not configured properly
concerning the TCP parameters. This must be analyzed
by the installation team

-1212 The parameter cHostAdr in the function is structurally
defective.

This is a critical error and must be analyzed by the
development team.

-1251 Pass parameter too large or too small, here: the
transferred port number is out of range.

This is a critical error and must be analyzed by the
development team.

Method in C++ class library -106 Unknown transfer parameter, here: the transferred port

number is out of range.
FEDM_ISCReaderModule::ConnectTCP

This is a critical error and must be analyzed by the
development team.

-137 Reader object is already connected with a
communication port.

This is a runtime problem with multiple reasons:

a) Another application is connected with this
RFID-Reader. This is a normal runtime
problem. The repetitive call can be applied
until the Server (RFID-Reader) can be
connected.

b) Multiple call of ConnectTCP with the same
Reader objects from the same application.
This is a critical error in the application
structure and must be analyzed by the
development team.

-157 Reader object is already connected with a
communication port.

The reason is a multiple call of ConnectTCP with
different Reader objects from the same application. This
is a critical error in the application structure which is not
supported by the class libraries and must be analyzed
by the development team.

Method in Java/.NET class library -1230 Communication error while reading the Reader-Info and
the connection is closed internally.

FedmliscReader::ConnectTCP -1232

)) This is an abnormal error and must be analyzed by the

(includes an internal call of ReadReaderInfo) -1237

development or installation team.

FEIG ELECTRONIC GmbH Seite 47 (von 104) Tutorial.docx

OBID® Tutorial

8.6.3. Errors while closing the connection

The closing of a connection is realized internally with a call of closesocket (Windows) or close
(Linux) and returns while the process of closing is not finished. Thus, although the disconnection
from the application-side is finished, the final TCP status TIME_WAIT is probably not yet reached.
To indicate this situation, the last TCP status is reflected to inform the application. With successive
calls of the static method GetTcpConnectionState(ip, port) (.NET) or the function
FETCP_GetSocketState(ip, port) (C/C++, VB, ...) the closing process can be observed.

Only two important errors can occur with the method DisConnect (C++, Java, .NET) or
FETCP_DisConnect (C/C++, VB, ...):

Function / Method Error code Error handling

Function in transport layer -1213 The socket in the Operating System cannot be closed

. and remains open.
FETCP_DisConnect

The disconnection must be repeated, until it is
successful.

1-10 The socket is closed, but the last TCP status is returned
as the final status TIME_WAIT is not reached.

Method in C++ class library -138 No connection is enabled and nothing is to be closed.

FEDM_ISCReaderModule::DisConnect This error code indicates a structural code problem in
the application and should be analyzed by the
development team.

At runtime, this error can be ignored,

Method in Java/.NET class library - no additional error codes

FedmlscReader::DisConnect

8.6.4. Problem with broken communication link — the Keep-Alive option

When the Ethernet cable gets broken while an active communication, the server-side application
(Reader) may not indicate an error while it is listening for new transmissions. On the other side, the
host application will run in an error with the next transmission and can close and reopen the
socket. But the close and reopen will never be noticed by the Reader, as he is listening at a half-
closed port.

The solution for this very realistic scenario is the activating of the Keep-Alive option on the server-
side. Every OBID i-scan® and OBID® classic-pro Reader with Ethernet interface has parameters for
Keep-Alive and it is recommended to enable this option.

FEIG ELECTRONIC GmbH Seite 48 (von 104) Tutorial.docx

OBID® Tutorial

8.7. Excursion: Detecting Readers with different Protocol Frames in one App

In constellations when OBID i-scan®- and/or OBID® classic-pro Readers supporting only Standard
Protocol Frame or only Advanced Protocol Frame must be detected together in one application,
the detection algorithm must be prepared with more logic to prevent long-term timeouts.

The following table illustrates the Protocol Frame support situation for the Reader Families:

Only Standard Protocol Frame Both Protocol Frames Only Advanced Protocol Frame

1% and 2" gen. Short-Range HF - future Short-Range HF gen.

ID ISC.MO01, ID ISC.M02

1% gen. Mid-Range HF g”—d gen. Mid-Range HF 3@ gen. Mid-Range HF

ID ISC.MR/PR/PRH100 ID ISC.MR101 ID ISC.MR102

1% gen. Long-Range HF 2™ gen Long-Range HF 3" gen. Long-Range HF

ID ISC.LR200 ID ISC.LR2000 ID ISC.LR2500-x

1% gen. classic-pro 2™ gen. classic-pro all future OBID® classic-pro

ID CPR.MO02, ID CPR.02, ID CPR.04 | ID CPR40, ID CPR44, ID CPR50, ID | Readers
CPR52, ID MAX50

all not named RFID-Readers

In the ambition to provide the markets with high performance RFID-Products, future RFID-Readers
will only support the Advanced Protocol Frame.

High-level APIs like C++, Java or .NET class libraries have integrated a flexible algorithm with the
methods FindBaudRate()* and ReadReader Info(). Programmers using these Methods have
nothing to do.

Applications based on Low-level APIs (up to the protocol layer realized with FEISC) must
implement this logic separately. For serial port and USB, different strategies must be applied. For
TCP/IP Readers the protocol frame can always be set to Advanced.

! only for serial or Bluetooth connection

FEIG ELECTRONIC GmbH Seite 49 (von 104) Tutorial.docx

OBID® Tutorial

8.7.1. Detecting at serial port

Detecting a Reader at the serial port needs protocol transmissions. The program flow illustrated
below works with the simple [0x52] Get Baud protocol, which is probed with different port frames,
different port baud rates and alternating protocol frames. All this with reduced timeout to speed up
the detection process. When all transmission settings are fit, the Reader returns a response,
otherwise, the transmission runs in a timeout.

setto
Standard Protocol Frame

setnext try all frames: BE1, 8N1, 801
frame

> S8t next try all baudrates: 115200, 57600, 38400, 19200, 9600, 4800
baudrate

send testcommand
[0x52] Get Baud

no no

Reader
response
received?

l K all alternate

baudrates e baudrates
tested? ‘_w Protocol Frame

yes
A,
Reader
not
detected

Reader
detected

Figure 3: Detection algorithm

FECOM and FEISC

// NOTE: this sample is without error handling. In real applications, the error handling for every
// FECOM and FEISC function call must be added!!

int back = 0;

int iPortHandle = FECOM_OpenPort('1™);

int iReaderHandle = FEISC_NewReader(iPortHandle);

char cTimeout[8];

char cOldBaud[8];

char cOldFrame[8];

char cOldTimeout[8];

char cPrtFrame[10];

char* baud[] = { 115200, 57600, ''38400", '19200", 9600, '4800" };
char* frame[] = { "8E1", "8N1', 801" };

if(iPortHandle > 0 && iReaderHandle > 0)
{
// call detect function
back = MyDetectCOM(iPortHnd, iReaderHandle);

FEIG ELECTRONIC GmbH Seite 50 (von 104) Tutorial.docx

OBID®

Tutorial

{

// detect function for serial port
int MyDetectCOM(int iPortHnd, int iReaderHandle)

// save actual baud rate, frame, timeout
FECOM_GetPortPara(iPortHnd, "baud™, cOldBaud);
FECOM_GetPortPara(iPortHnd, "frame'™, cOldFrame);
FECOM_GetPortPara(iPortHnd, “timeout™, cOldTimeout);

// reduce timeout to 300ms
FECOM_SetPortPara(iPortHnd, “timeout™, “3007);

// for some OBID® Readers (1SC.MR/PR/PRH100, ISC.LR200, I1SC.M02, CPR.MO2, CPR.02, CPR.04)
// we setup Standard Protocol Frame to give these Reasers a chance

FEISC_SetReaderPara(iReaderHandle, "FrameSupport™, "STANDARD™);

for(int j=0; j<3; j++) // try all frames "8E1', "8N1", "801"

{
// set the next frame
FECOM_SetPortPara(iPortHnd, "frame", frame[j]):;
for(int i=0; i<3; i++) // try all baud rates, beginning with ""115200"
{
// set the next baud rate
FECOM_SetPortPara(iPortHnd, "baud", baud[il);
// search for the connected Reader
// with busaddress 255 each Reader is answering
back = FEISC_0x52_GetBaud(iReaderHandle, 255);
if(back = 0)
{
// Reader detected, restore communication timeout
FECOM_SetPortPara(iPortHandle, "Timeout™, cOldTimeout);
return -1;
3
3
// alternate protocol frame
FEISC_GetReaderPara(iReaderHandle, "FrameSupport™, cPrtFrame);
if(strcmp(cPrtFrame, "STANDARD'™) == 0)
FEISC_SetReaderPara(iReaderHandle, "FrameSupport™, "ADVANCED™);
else
FEISC_SetReaderPara(iReaderHandle, *"FrameSupport™, "STANDARD™);
3
¥

// no Reader detected, restore previous port settings
FECOM_SetPortPara(iPortHandle, "baud™, cOldBaud);
FECOM_SetPortPara(iPortHandle, "frame™, cOldFrame);
FECOM_SetPortPara(iPortHandle, "Timeout™, cOldTimeout);
return O;

FEIG ELECTRONIC GmbH Seite 51 (von 104) Tutorial.docx

OBID® Tutorial

8.7.2. Detecting at USB

Detecting a Reader at USB needs no protocol transmissions and it makes the setting of the
protocol frame much easier. When a Reader is detected by the kernel driver, the Reader’'s name is
requested and evaluated. If the Reader name is found in a positive list (CPR.04, ISC.MR100,
ISC.PRH100), the protocol frame is set to Standard, otherwise to Advanced.

EEUSB and FEISC

// NOTE: this sample is without error handling. In real applications, the error handling for every
// FEUSB and FEISC function call must be added!!

int back = 0;

int iReaderHandle = FEISC_NewReader(0);
char cPortHandle[11];

char cDeviceName[32];

if(iReaderHandle > 0)
{
// call detect function
back = MyDetectUSB(iReaderHandle);

// detect function for USB
int MyDetectUSB(int iReaderHandle)
{
int iPortHandle = FEUSB_ScanAndOpen(0); // connect first found OBID® Reader
if(iPortHandle < 0)
return -1; // no Reader connected

// set port handle in reader object
sscanf(cPortHandle, "%d", &iPortHandle);
FEISC_SetReaderPara(iReaderHandle, “PortHnd”, cPortHandle);

// request Reader name to detect ISC.MR/PRH100-U or CPR.04-USB,
// which supports only Standard Protocol Frame
// all other USB-Readers supports Advanced Protocol Frame

FEUSB_GetDevicePara(iPortHandle, “”, cDeviceName);
if(strcmp(cDeviceName, “ID CPR.04-USB'™) == 0)
FEISC_SetReaderPara(iReaderHandle, "FrameSupport™, "STANDARD™);
else if(strcmp(cDeviceName, “ID 1SC.MR100-U") == 0)
FEISC_SetReaderPara(iReaderHandle, "FrameSupport™, "STANDARD™);
else if(strcmp(cDeviceName, “ID ISC.PRH100-U") == 0)
FEISC_SetReaderPara(iReaderHandle, "FrameSupport™, "STANDARD™);
else
FEISC_SetReaderPara(iReaderHandle, "FrameSupport™, "ADVANCED™);

// Reader detected
return O;

FEIG ELECTRONIC GmbH Seite 52 (von 104) Tutorial.docx

OBID® Tutorial

9. Section 3: Basic knowledge about how to use SendProtocol()

More than 40 different Readers with together more than 65 commands, many of them individual
adjustable with a mode byte, a lot of commands with subcommands and finally some commands
with reader dependent content have to be represented by a simple communication process. This is
the intention of the method SendProtocol (). It transfers only a single parameter: the command
byte.

The principle use of SendProtocol () is following a schema represented by the picture below.

SetConfigPara
GetConfigPara
SetData
GetData
SetTableData
GetTableData

<

SendProtocol
»
-

FindTablelndex

SetTableSize

iy
Ml

EEData RAMData TMPData m_ISOTable

FEDM_ISCReader

Serialize

XML File 'O

The horizontal axis shows the control flow that is generated by SendProtocol(). It
independently retrieves all the necessary data from the integrated data containers before
transmitting the send protocol and stores the received protocol data there as well. This means the
application must write all the data necessary for this protocol to the corresponding data containers
in the correct locations before invoking the SendProtocol (). Likewise the receive data are
stored at particular locations in corresponding data containers.

In the vertical axis are the data streams which are moved using the overlaid methods:

GetData / SetData transfer methods for all common communication protocols. The key to the
protocol data are so-called access constants and can be found in
FEDM_ISCReaederlID.h (C++) and FedmliscReaderlD (Java, .NET).

An example for an access constant is

C++ FEDM_ISC_TMP_READER_INFO_MODE

Java/.NET FedmlscReaderID.FEDM_ISC_TMP_READER_INFO_MODE

GetConfigPara / SetConfigPara transfer methods for modifying the Reader’s configuration in the Reader object.
Each configuration parameter is identified by an identifier string from a
namespace (C++), interface (Java) or structure (.NET).

An example for an identifier is:

C++ ReaderConfig::DigitallO::Relay::No1::ldleMode
Java/.NET ReaderConfig.DigitallO.Relay.No1l.ldleMode
GetTableData / SetTableData transfer methods for table oriented commands in the Host-Mode, Buffered-

Read-Mode and Notification-Mode. Each table element is identified by an
constant and can be found in FEDM_ISC.h (C++) and FedmlIscReaderConst (Java,

.NET).
An example for a constant is:
C++ FEDM_ISC_DATA_SNR

FEIG ELECTRONIC GmbH Seite 53 (von 104) Tutorial.docx

OBID® Tutorial

‘ Java/.NET FedmlscReaderConst.DATA SNR

Summarized: a bulk of Set methods have to be placed in front of SendProtocol (), followed
optionally by a bulk of Get methods to retrieve the received data.

The following example shows the reading, modification and rewriting of one block of the reader
configuration.

EEDM

int back = 0;
unsigned char ucCfgAdr = 2; // Address of the configuration block
bool bEEProm = false; // Configuration data from/in RAM of the reader
unsigned int uildleModeRell // Parameter IDLE-MODE
// settings for the next SendProtocol
reader .SetData(FEDM_ISC_TMP_READ_CFG, (unsigned char)0x00); // reset mode byte
reader .SetData(FEDM_ISC_TMP_READ_CFG_ADR, ucCfgAdr); // set address
reader .SetData(FEDM_ISC_TMP_READ_CFG_LOC, bEEProm); // set memory location on RAM
// read configuration data
back = reader.SendProtocol (0x80);
// evaluate back here!
uildleModeRell = 3; // REL1 alternating on
//(Note: set frequency in Parameter IDLE-FLASH)
// change configuration parameter in RAM
reader .SetConfigPara(ReaderConfig::Digital10::Relay::Nol::ldleMode, uildleMode, false);
// settings for the next SendProtocol

reader .SetData(FEDM_ISC_TMP_WRITE_CFG, (unsigned char)0x00); // reset mode byte
reader .SetData(FEDM_ISC_TMP_WRITE_CFG_ADR, ucCfgAdr); // set address
reader .SetData(FEDM_ISC_TMP_WRITE_CFG_LOC, bEEProm); // set memory location on EEPROM

// rewrite configuration data
back = reader.SendProtocol (0x81);

import de.feig.*;
import de.feig.ReaderConfig.*;

int back = 0;

byte cfgAdr = 2; // Address of the configuration block

boolean eeProm = false; // Configuration data from/in RAM of the reader
int idleModeRell // Parameter IDLE-MODE

try

{

// settings for the next SendProtocol
reader .setData(FedmlscReaderID.FEDM_ISC_TMP_READ_CFG, (byte)Ox00); // reset mode byte
reader .setData(FedmlscReader1D.FEDM_ISC_TMP_READ_CFG_ADR, cfgAdr); // set address
reader .setData(FedmlscReaderID.FEDM_ISC_TMP_READ_CFG_LOC, eeProm); // RAM memory
// read configuration data
back = reader.sendProtocol (0x80);
// evaluate back here!
idleModeRell = 3; // REL1 alternating on
//(Note: set frequency in Parameter IDLE-FLASH)
// change configuration parameter in RAM
reader .setConfigPara(Digitall10.Relay.Nol.1dleMode, idleMode, false);
// settings for the next SendProtocol
reader .setData(FedmlscReaderID.FEDM_ISC_TMP_WRITE_CFG, (byte)0x00); // reset mode byte
reader .setData(FedmlscReaderID.FEDM_ISC_TMP_WRITE_CFG_ADR, cfgAdr); // set address
reader .setData(FedmlscReaderID.FEDM_ISC_TMP_WRITE_CFG_LOC, eeProm); // RAM memory
// rewrite configuration data
back = reader.sendProtocol ((byte)0x81);
¥
catch (Exception ex)

{

}

FEIG ELECTRONIC GmbH Seite 54 (von 104) Tutorial.docx

OBID® Tutorial

c#

using OBID;
using OBID.ReaderConfig;

int back = 0;

byte cfgAdr = 2; // Address of the configuration block

boolean eeProm = false; // Configuration data from/in RAM of the reader
int idleModeRell // Parameter IDLE-MODE

try

{

// settings for the next SendProtocol
reader .SetData(FedmlscReaderID.FEDM_ISC_TMP_READ_CFG, (byte)0x00); // reset mode byte
reader .SetData(FedmlscReaderID.FEDM_ISC_TMP_READ_CFG_ADR, cfgAdr); // set address
reader .SetData(FedmlscReader 1D.FEDM_ISC_TMP_READ_CFG_LOC, eeProm); // RAM memory
// read configuration data
back = reader.SendProtocol (0x80);
// evaluate back here!
idleModeRell = 3; // REL1 alternating on
//(Note: set frequency in Parameter IDLE-FLASH)
// change configuration parameter in RAM
reader .SetConfigPara(DigitallO.Relay.Nol.ldleMode, idleMode, false);
// settings for the next SendProtocol
reader .SetData(FedmlscReader I1D.FEDM_ISC_TMP_WRITE_CFG, (byte)0x00); // reset mode byte
reader .SetData(FedmlscReaderID.FEDM_ISC_TMP_WRITE_CFG_ADR, cfgAdr); // set address
reader .SetData(FedmlscReader 1D.FEDM_ISC_TMP_WRITE_CFG_LOC, eeProm); // RAM memory
// rewrite configuration data
back = reader.SendProtocol ((byte)0x81);
3

catch (Exception ex)

{

T

FEIG ELECTRONIC GmbH Seite 55 (von 104) Tutorial.docx

OBID® Tutorial

10. Section 4: Read of important information from Reader

This section presents same valuable methods to simplify application programming.

10.1. Reader Information: The method ReadReaderInfo()

Immediately after establishing the connection - but only once - an application should read
important information from the Reader to initialize the reader object with at least the reader type.
The easiest and best way is to call the method ReadReaderInfo(). This method executes
successive all [0x66] Reader Info commands to collect the complete reader information in a
structure (C++) or class (Java, .NET) and to set the reader type for internal initializations.

The ReaderInfo structure/class collects all info fields of all Readers. Thus, the structure/class is
very big. To get more clearness about the info fields, please have a quick look to the system
manual of the Reader. The Readerinfo structure/class is hold internally in the Reader object and
can later be get with GetReaderInfo().

Applications, based on Function Libraries up to FEISC needs not to read information from the
Reader. Inside FEISC, nothing is to be initialized. But if an application should be fit for different
RFID-Readers, at least the reader type should be read with the command [0x65] or [0x66] with
mode 0x00 and be stored in a variable for later decisions.

FEDM
FEDM_ISC_READER_INFO* info = NULL;

info = reader.ReadReaderInfo();
if(reader.GetLastError() == 0)
{

// complete Reader info read and reader object initialized

if(info->blsModeOx00Read)
{

// all values for mode 0x00 are valid
// info->ucReaderType contains the value of the reader type

}

3
EEISC

int back = 0;

int iReaderHandle = 0;

unsigned char uclnfo[30];
unsigned char ucReaderType = 0;

// read mode Ox00 in binary format (last parameter is 0)
// the supported modes can be found in the system manual of the Reader
back = FEISC_0x66_ReaderInfo(iReaderHandle, 255, 0x00, uclnfo, 0);
if(back == 0)
{

// OK

// content of uclnfo is in the same order as described in the

// system manual of the Reader

ucReaderType = uclnfo[4];

FEIG ELECTRONIC GmbH Seite 56 (von 104) Tutorial.docx

OBID® Tutorial

import de.feig.*;
FedmlscReaderInfo info = null;
try
{

reader . readReaderInfo();

// complete Reader info read and reader object initialized

if(info. isModeOx00Read)

{
// all values for mode 0x00 are valid
// info.readerType contains the value of the reader type
}
}
catch (Exception ex)
{
3
chvasarrl : %
using OBID;

FedmlscReaderInfo info = null;

try
{

reader .ReadReaderInfo();
// complete Reader info read and reader object initialized

if(info. IsModeOx00Read)
{
// all values for mode 0x00 are valid
// info.ReaderType contains the value of the reader type
3
3
catch (Exception ex)

{

}

Nice to know, that the Java/.NET class FedmiscReaderInfo contains a method GetReport() to
return a report string like it is used in ISOStart/CPRStart. C++ Programmers have to use the class
FedmlscReport_ReaderInfo to generate the report string.

FEIG ELECTRONIC GmbH Seite 57 (von 104) Tutorial.docx

OBID® Tutorial

10.2. Reader Diagnostic: The method ReadReaderDiagnostic()

Some Reader supports the query of diagnostic data. These diagnostic data can be valuable for
analyzing problems inside the Reader or on the RF channel(s). More information about the
diagnostic data can be found in the system manuals of the Readers.

The method ReadReaderDiagnostic executes successive all [0x6E] Reader Diagnostic commands
to collect all available reader diagnostic data in a structure (C++) or class (Java, .NET).

Applications, based on Function Libraries up to FEISC have to read the diagnostic data in a loop of
commands [0x6E] Reader Diagnostic with modes depends on the Reader type.

FEDM
FEDM_1SC_READER_DIAGNOSTIC* diag = NULL;

diag = reader.ReadReaderDiagnostic();
if(reader.GetLastError() == 0)
{

// complete Reader diagnostic data read

if(diag->blsModeOx01Read)
{

// all values for mode 0x01 are valid

}

3
EEISC

int back = 0;

int iReaderHandle = 0;
unsigned char ucDiag[30];

// read mode 0x01
// the supported modes can be found in the system manual of the Reader
back = FEISC_Ox6E_RdDiag(iReaderHandle, 255, 0x01, uclnfo);
if(back == 0)
{
// OK
// content of ucDiag is in the same order as described in the
// system manual of the Reader

}

FEIG ELECTRONIC GmbH Seite 58 (von 104) Tutorial.docx

OBID® Tutorial

import de.feig.*;

// readReaderDiagnosotic is actually not implemented.
// alternatively, the diagnostic data can be read in a loop of the following sequence

byte[] diag = null;

try
{
reader .setData(FedmlscReaderD.FEDM_ISC_TMP_DIAG_MODE, (byte)Ox01);
reader .sendProtocol ((byte)O0Xx6E) ;
// diagnostic data read
// OK
// content of diag is in the same order as described in the
// system manual of the Reader
diag = reader.getByteArrayData(FedmlscReaderID. FEDM_ISC_TMP_DIAG_DATA);
¥
catch (Exception ex)
{
3
chvnsnn-l B %
using OBID;

// ReadReaderDiagnosotic is actually not implemented.
// alternatively, the diagnostic data can be read in a loop of the following sequence

byte[] diag = null;

try

{
reader_SetData(FednlscReader ID_FEDM_ISC_TMP_DIAG_MODE, (byte)0x01);

reader .SendProtocol ((byte)Ox6E) ;
// diagnostic data read

// OK

// content of diag is in the same order as described in the

// system manual of the Reader

reader .GetData(FedmlscReader1D. FEDM_ISC_TMP_DIAG_DATA, out);
3

catch (Exception ex)

{
3

FEIG ELECTRONIC GmbH Seite 59 (von 104) Tutorial.docx

OBID® Tutorial

10.3. Reader Configuration: The method ReadCompleteConfiguration()

Each OBID i-scan® and OBID® classic-pro Reader is controlled by parameters which are stored
grouped in blocks in an EEPROM and are described in detail in the system manual for the
respective Reader. After switching on or resetting the Reader, all parameters are loaded into RAM,
evaluated and incorporated in the controller.

All parameters can be modified using a protocol so that the behavior of the Reader can be adapted
to the application. Ideally, the program ISOStart/CPRStart is used for this adaptation and normally
no parameters have to be changed in the application. Despite this, it can happen that one or more
parameters from a program have to be changed.

A common characteristic of all Readers is the grouping in blocks of thematically related parameters
to 14 or 30 bytes per configuration block. Each parameter cannot be addressed individually but
must always be retrieved together with a configuration block using the protocol [0x80] or [Ox8A]
Read Configuration, then modified and finally written back to the reader with the protocol [0x81] or
[0x8B] Write Configuration. This cycle must always be complied with and is also checked by the
reader class. This means that writing a configuration block without previously reading the same
block is not possible.

17. Section 11: Management of the Reader configuration discusses the programming for Reader
configuration in more detail. But if your application has to modify the configuration, it is
recommended to use the method ReadReaderConfiguration once after the connection is
established and after ReadReaderInfo().

FEDM
int back = 0;

back = reader.ReadCompleteConfiguration(true); // read configuration from EEPROM
if(back == 0x13 || // Login-Request
back == 0x19) // crypto processing error

{
// login or authentication is required
// and then read must be repeated

}

back = reader.ReadCompleteConfiguration(false); // read configuration from RAM

import de.feig.*;
int back = 0;

try
{
back = reader.readCompleteConfiguration(true); // read configuration from EEPROM
if(back == 0x13 || // Login-Request
back == 0x19) // crypto processing error
{

// login or authentication is required
// and then read must be repeated
}
back = reader.readCompleteConfiguration(false); // read configuration from RAM
¥
catch (Exception ex)

{

}

FEIG ELECTRONIC GmbH Seite 60 (von 104) Tutorial.docx

OBID® Tutorial

Microsofty C#
et

using OBID;

int back = 0;

try
{
back = reader.ReadCompleteConfiguration(true); // read configuration from EEPROM
if(back == 0x13 || // Login-Request
back == 0x19) // crypto processing error
{

// login or authentication is required
// and then read must be repeated

3
back = reader.ReadCompleteConfiguration(false); // read configuration from RAM
3
catch (Exception ex)
{
3

FEIG ELECTRONIC GmbH Seite 61 (von 104)

Tutorial.docx

OBID® Tutorial

11. Section 5: Programming for the Host-Mode

The Host-Mode or Polling-Mode is the basic working mode and supported by all RFID-Readers.
One of the main advantages is the use of an anti-collision algorithm to detect multiple
Transponders with different RF-Protocols in one cycle.

11.1. Inventory

The Inventory is the most important command for Transponder identification in the RF field. The
command [0xB0][0x01] Inventory is controlled by a mode byte and returns, if Transponders are
found, one or multiple record sets. The structure of each record set depends on the Transponder
type.

For the mode byte, the following flags are defined, but not all are applicable with each Reader type:

Bit Number Flag Notes
7 MORE guery of more data from last Inventory cycle
6 NTFC Notification (only classic-pro Reader)
5 PRESC no Inventory, only presence check (only classic-pro Reader)
4 ANT request of additional antenna information (only i-scan Reader)
3 -
2 -
1 -
0 -

The received record sets are copied into the internal ISOTable, where each Transponder record
resides in one table item. The following Host commands (in addressed and selected mode) are
then based on this table item and new Transponder data like read data blocks are added. Also
data blocks to be written must first be set into the table item before the Host command can be
executed.

A table item has data members for all ISO 15693, ISO 14443 and EPC Classl Gen2 compliant
Transponders. Thus, not every table element is applicable with every Transponder type.

The following table collects some important table items returned by an Inventory (all elements can
be viewed by documentation or C++ code):

Element Reader Support Notes
SNR or UID all Serial Number or UID or IDD with variable length of up to 96
bytes
SNR-Length all length of SNR/UID in number of bytes
TrType all Transponder type according the system manuals of the
Readers
TrType Transponder Type
0x00 NXP I-Codel
0x01 National Instruments Tag-it
0x03 Transponder according ISO15693

FEIG ELECTRONIC GmbH Seite 62 (von 104) Tutorial.docx

OBID® Tutorial

0x04 Transponder according 1ISO14443A
0x05 Transponder according 1SO14443B
0x06 NXP I-Code EPC
0x07 NXP I-Code UID
0x08 Jewel
0x09 ISO 18000-3M3
0x0A STMicroelectronics SR176
0x0B STMicroelectronics SRIxx (SRI512, SRIX512, SRI4K, SRIX4K)
0x0C Microchip MCRFxxx
0x10 Innovatron (ISO 14443B')
0x11 ASK CTx
0x80 ISO18000-6 A
0x81 1ISO18000-6 B (UCODE; UCODE EPC 1.19)
0x83 EM4222, EM4444
0x84 EPC class 1 Gen 2
Rx Data ISO 15693 / ISO 14443 Receive data block with variable block size
Tx Data ISO 15693 / I1SO 14443 Transmit data block with variable block size
Rx EPC-Bank EPC Class1 Gen2 Receive data block for EPC memory with block size 2
Tx EPC-Bank EPC Class1 Gen2 Transmit data block for EPC memory with block size 2
Rx TID-Bank EPC Class1 Gen2 Receive data block for TID memory with block size 2
Tx TID-Bank EPC Class1 Gen2 Transmit data block for TID memory with block size 2
Rx Res-Bank EPC Class1 Gen2 Receive data block for Reserved memory with block size 2
Tx Res-Bank EPC Class1 Gen2 Transmit data block for Reserved memory with block size 2
AFI ISO 15693 Application Family Identifier
DSFID ISO 15693 Data Storage Family Identifier
IDDT EPC Class1 Gen2 Identifier Data Type
Trinfo ISO 14443 A Transponder Info
Optinfo ISO 14443 A Optional Information
Protolnfo ISO 14443 B Protocol Information
the following elements are antenna specific records (ANT flag must be set in Mode)
Flags ISO 15693/EPC Class1 Gen2 | Record information
AntCount ISO 15693/EPC Classl Gen2 | Number of antenna records
AntNumber(] ISO 15693/EPC Class1 Gen2 | array with antenna numbers
AntStatus[] ISO 15693/EPC Class1 Gen2 | array with antenna status
AntRSSI[] ISO 15693/EPC Class1 Gen2 | array with RSSI values

FEIG ELECTRONIC GmbH Seite 63 (von 104) Tutorial.docx

OBID®

Tutorial

{

EEDM

int back = 0;
unsigned char ucTrType = 0;
string sUid;

// settings for the next SendProtocol
reader .SetData(FEDM_ISC_TMP_BO_CMD, (unsigned char)0x01); // sub command Inventory
reader .SetData(FEDM_ISC_TMP_BO_MODE, (unsigned char)0x00) ; // no option flags set

// clear internal 1SOTable for next Inventory
reader .ResetTable(FEDM_ISC_ISO_TABLE);

// execute Inventory
back = reader.SendProtocol (0xB0);
if(back == 0x00)

// query table data

for(int idx=0; idx<reader.GetTableLength(); idx++)

{
reader .GetTableData(idx, FEDM_ISC_1SO_TABLE, FEDM_ISC_DATA TRTYPE, &ucTrType);
reader.GetTableData(idx, FEDM_ISC_ISO_TABLE, FEDM_ISC_DATA_SNR, sUid);

FEIG ELECTRONIC GmbH Seite 64 (von 104)

Tutorial.docx

OBID® Tutorial

import de.feig.*;

int back = 0;
byte trType = 0;
String uid;

try

{
// settings for the next sendProtocol
reader .setData(FedmlscReader1D.FEDM_ISC_TMP_BO_CMD, (byte)0x01);// sub command
reader .setData(FedmlscReaderID.FEDM_ISC_TMP_BO_MODE, (byte)0x00); // no option flags

// clear internal 1SOTable for next Inventory
reader .resetTable(FedmlscReaderConst. 1SO_TABLE);

// execute Inventory
back = reader.sendProtocol ((byte)0xB0);
if(back == 0x00)

{
// query table data
for(int 1dx=0; idx<reader.getTableLength(); idx++)
{
reader .getByteTableData(idx, FedmlscReaderConst.I1SO_TABLE,
FedmlscReaderConst.DATA_TRTYPE);
uid = reader.getStringTableData(1idx, FedmlscReaderConst.1SO_TABLE,
FedmlscReaderConst.DATA_SNR);
3
}
}
catch (Exception ex)
{
3
chvasarrl : C#
using OBID;

int back = 0;
byte trType = 0;
string uid;

try

{
// settings for the next SendProtocol
reader .SetData(FedmlscReader1D.FEDM_ISC_TMP_BO_CMD, (byte)0x01);// sub command
reader .SetData(FedmlscReaderID.FEDM_ISC_TMP_BO_MODE, (byte)0x00); // no option flags

// clear internal 1SOTable for next Inventory
reader .ResetTable(FedmlscReaderConst.1SO_TABLE);

// execute Inventory
back = reader.SendProtocol ((byte)0xB0);
if(back == 0x00)

{
// query table data
for(int idx=0; idx<reader.GetTableLength(); idx++)
{
reader .getTableData(idx, FedmlscReaderConst.ISO_TABLE, FedmlscReaderConst.DATA_TRTYPE,
out trType);
reader .getTableData(idx, FedmlscReaderConst.1SO_TABLE, FedmlscReaderConst.DATA_SNR,
out uid);
¥
3
3
catch (Exception ex)
{
3

FEIG ELECTRONIC GmbH Seite 65 (von 104) Tutorial.docx

OBID® Tutorial

11.2. Read / Write Transponder data

All OBID® RFID-Readers support the reading and writing of transponder data. Mostly, the normal
addressed mode is implemented, which means, that the block address has a size of one byte and
therefore the highest address is limited to 255.

Some few Readers have additionally the extended addressed mode implemented with which the
block address is two bytes wide and the UID can have a variable length. For OBID® i-scan UHF,
the extended address mode supports also different memory banks and an access password.

The examples below reads some data blocks from the previously detected Transponder, and
writes the same data blocks back again. The first block address is 5 and 4 data blocks will be read.
After the read operation, the block size of data blocks is returned by the Transponder and stored in
the internal ISOTable. The block size is essential for calculating the returned number of bytes.

11.2.1. Normal addressed mode

FEDM

int back = 0;

int idx = 0;

unsigned char ucBlockSize = 0;

unsigned char ucData[16]; // buffer for 4 data blocks of each 4 bytes
string sUid;

// request UID from anywhere

// settings for the next SendProtocol

reader .SetData(FEDM_ISC_TMP_BO_CMD, (unsigned char)0x23); // sub command

reader .SetData(FEDM_ISC_TMP_BO_MODE, (unsigned char)0x01); // addressed mode

reader .SetData(FEDM_ISC_TMP_BO_REQ_UID, sUid); // UID for addressed mode

reader .SetData(FEDM_ISC_TMP_BO_REQ_DB_ADR, (unsigned char)5); // first block address
reader .SetData(FEDM_ISC_TMP_BO_REQ_DBN, (unsigned char)4); // number of blocks to be read

// execute Read Multiple Blocks
back = reader.SendProtocol (0xB0);
if(back == 0x00)

{
// find the table item for specific UID
idx = reader.FindTablelndex(0, FEDM_ISC_ISO_TABLE, FEDM_ISC_DATA_SNR, sUid);
if(idx >= 0)
{
// query blocksize from table
reader .GetTableData(idx, FEDM_ISC_ISO_TABLE, FEDM_ISC_DATA_BLOCKSIZE, ucBlockSize);
// query table data from rx buffer
for(int 1=0; i<4; i++)
reader .GetTableData(idx, FEDM_ISC_I1SO_TABLE, FEDM_ISC_DATA RxDB, 5,
&ucData[i*ucBlockSize], 4);
// set data into tx buffer
for(int i=0; i<4; i++)
reader.SetTableData(idx, FEDM_ISC_ISO_TABLE, FEDM_ISC_DATA_TxDB, 5,
&ucData[i*ucBlockSize], ucBlockSize);
// execute Write Multiple Blocks
reader .SetData(FEDM_ISC_TMP_BO_CMD, (unsigned char)O0x24); // sub command
back = reader.SendProtocol (0xB0);
}
¥

FEIG ELECTRONIC GmbH Seite 66 (von 104) Tutorial.docx

OBID®

Tutorial

import de.feig.*;

int back = 0;

int idx = 0;

byte blockSize = 0,
byte[] data = null;
String uid;

// request UID from anywhere

try

{
// settings for the next sendPr
reader .setData(FedmlscReaderiID.
reader .setData(FedmlscReaderlID.
reader .setData(FedmlscReaderlID.
reader .setData(FedmlscReaderID.
reader .setData(FedmlscReaderlID.

otocol

FEDM_I1SC_TMP_BO_CMD, (byte)0x23);// sub command
FEDM_I1SC_TMP_BO_MODE, (byte)0Ox01); // addressed mode
FEDM_ISC_TMP_BO_REQ_UID, uid); // UID for addressed mode
FEDM_1SC_TMP_BO_REQ DB_ADR, (byte)5); // first block addr
FEDM_ISC_TMP_BO_REQ_DBN, (byte)4); // number of blocks

// execute Read Multiple Blocks
back = reader.sendProtocol ((byte)0xB0) ;
if(back == 0x00)

{
// find the table item for specific UID
idx = reader.findTablelndex(0, FedmlscReaderConst.I1SO_TABLE, FedmlscReaderConst.DATA_SNR,
uid);
if(idx >= 0)
{
// query blocksize from table
blockSize = reader.getByteTableData(idx, FedmlscReaderConst.1SO_TABLE,
FedmlscReaderConst.DATA_BLOCKSIZE);
// query table data from rx buffer
data = reader.getByteArrayTableData(idx, FedmlscReaderConst.1SO_TABLE,
FedmlscReaderConst.DATA_RxDB, 5, 4);
// set data into tx buffer
reader.setTableData(idx, FedmlscReaderConst.1SO_TABLE, FedmlscReaderConst.DATA_TxDB,
5, 4, blockSize, data);
// execute Write Multiple Blocks
reader .setData(FedmlscReaderID.FEDM_ISC_TMP_BO_CMD, (byte)0x24);// sub command
back = reader.sendProtocol ((byte)0OxB0);
3
¥
¥
catch (Exception ex)
{
3

FEIG ELECTRONIC GmbH

Seite 67 (von 104) Tutorial.docx

OBID® Tutorial

C#
using OBID;

int back = 0;

int idx = 0;

byte blockSize = 0,
byte[] data = null;
string uid;

try

{
// settings for the next sendProtocol
reader .SetData(FedmlscReaderID.FEDM_ISC_TMP_BO_CMD, (byte)0x23);// sub command
reader .SetData(FedmlscReaderID.FEDM_ISC_TMP_BO_MODE, (byte)0x01); // addressed mode
reader .SetData(FedmlscReader1D.FEDM_ISC_TMP_BO_REQ _UID, uid); // UID for addressed mode
reader .SetData(FedmlscReaderID.FEDM_ISC_TMP_BO_REQ_DB_ADR, (byte)5); // first block addr
reader .SetData(FedmlscReaderID.FEDM_ISC_TMP_BO_REQ_DBN, (byte)4); // number of blocks
// execute Read Multiple Blocks
back = reader.SendProtocol ((byte)0xB0);
if(back == 0x00)

{
// find the table item for specific UID
idx = reader.FindTablelndex(0, FedmlscReaderConst.1SO_TABLE, FedmlscReaderConst.DATA_SNR,
uid);
if(idx >= 0)
{
// query blocksize from table
reader .GetTableData(idx, FedmlscReaderConst.1SO_TABLE,
FedmlscReaderConst.DATA_BLOCKSIZE, out blockSize);
// query table data from rx buffer
reader .GetTableData(idx, FedmlscReaderConst.I1SO_TABLE,
FedmlscReaderConst.DATA_RxDB, 5, 4, out data);
// set data into tx buffer
reader .SetTableData(idx, FedmlscReaderConst.1SO_TABLE, FedmlscReaderConst.DATA_TxDB,
5, 4, blockSize, data);
// execute Write Multiple Blocks
reader .SetData(FedmlscReader1D.FEDM_ISC_TMP_BO_CMD, (byte)0x24);// sub command
back = reader.SendProtocol ((byte)0xB0);
3
3
3
catch (Exception ex)
{
3

FEIG ELECTRONIC GmbH Seite 68 (von 104) Tutorial.docx

OBID® Tutorial

11.2.2. Extended addressed mode

If using Transponders with a UID length not equal 8 or Transponders with larger memory and a
number of data blocks greater than 256, the Extended Addressed Mode must be enabled in the
request protocol.

It must be considered, that the ISOTable is configured by default for maximal 256 data blocks with
32 bytes in each block to optimize memory consumption. For Transponders with more than 256
data blocks, the internal buffer sizes of the ISOTable must be modified with the method:

SetTableSize(unsigned int uiTablelD,int iSize,
int IRxXDB_BlockCount, int IRxDB_BlockSize,
int 1TxDB_BlockCount,int 1TxDB_BlockSize).

This should be done only once after initializing of the reader object.

FEDM

int back = 0;

int idx = 0;

unsigned char ucBlockSize = 0;

unsigned char ucData[16]; // buffer for 4 data blocks of each 4 bytes
string sUid;

// request UID from anywhere

// settings for the next SendProtocol

reader .SetData(FEDM_ISC_TMP_BO_CMD, (unsigned char)0x23); // sub command

reader .SetData(FEDM_ISC_TMP_BO_MODE, (unsigned char)0x00); // clear mode byte

reader .SetData(FEDM_ISC_TMP_BO_MODE_ADR, (unsigned char)0x01); // addressed mode

reader .SetData(FEDM_ISC_TMP_BO_MODE_EXT_ADR, true); // extended addressed mode

reader .SetData(FEDM_ISC_TMP_BO_MODE_UID_LF, true); // UID with variable length

reader .SetData(FEDM_ISC_TMP_BO_REQ_UID, sUid); // UID for addressed mode

reader .SetData(FEDM_ISC_TMP_BO_REQ_UID_LEN, sUid.length()/2); // length of UID in number of bytes
reader .SetData(FEDM_ISC_TMP_BO_BANK, (unsigned char)0x00); // clear bank byte

reader .SetData(FEDM_I1SC_TMP_BO_BANK_BANK_NR, (unsigned char)0x03); // user memory bank
reader .SetData(FEDM_ISC_TMP_BO_REQ_DB_ADR_EXT, (unsigned int)5); // Tirst block address
reader .SetData(FEDM_ISC_TMP_BO_REQ_DBN, (unsigned char)4); // number of blocks to be read

// execute Read Multiple Blocks
back = reader.SendProtocol (0xB0);
if(back == 0x00)

{
// find the table item for specific UID
idx = reader.FindTablelndex(0, FEDM_ISC_ISO_TABLE, FEDM_ISC_DATA_SNR, sUid);
if(idx >= 0)
{
// query blocksize from table
reader .GetTableData(idx, FEDM_ISC_ISO_TABLE, FEDM_ISC_DATA_BLOCKSIZE, ucBlockSize);
// query table data from rx buffer
for(int 1=0; i<4; i++)
reader .GetTableData(idx, FEDM_ISC_I1SO_TABLE, FEDM_ISC_DATA RxDB, 5,
&ucData[i*ucBlockSize], 4);
// set data into tx buffer
for(int i=0; i<4; i++)
reader.SetTableData(idx, FEDM_ISC_ISO_TABLE, FEDM_ISC_DATA_TxDB, 5,
&ucData[i*ucBlockSize], ucBlockSize);
// execute Write Multiple Blocks
reader .SetData(FEDM_ISC_TMP_BO_CMD, (unsigned char)0x24); // sub command
back = reader.SendProtocol (0xB0);
}
¥

FEIG ELECTRONIC GmbH Seite 69 (von 104) Tutorial.docx

OBID®

Tutorial

import de.feig.*;

int back = 0;

int idx = 0;

byte blockSize = 0,
byte[] data = null;
String uid;

// request UID from anywhere

try

{
// settings for the next sendProtocol
reader .setData(FedmlscReaderID.FEDM_ISC_TMP_BO_CMD, (byte)0x23);// sub command
reader .setData(FedmlscReader1D.FEDM_ISC_TMP_BO_MODE, (byte)0x00); // clear mode byte
reader .setData(FedmlscReader1D.FEDM_ISC_TMP_BO_MODE_ADR, (byte)0x01); // addressed mode
reader .setData(FedmlscReaderID.FEDM_ISC_TMP_BO_MODE_EXT_ADR, true); // extended addressed mode
reader .setData(FedmlscReaderD.FEDM_ISC_TMP_BO_MODE_UID_LF, true); // UID with variable length
reader .setData(FedmlscReader1D.FEDM_ISC_TMP_BO_REQ_UID, uid); // UID for addressed mode
reader .setData(FedmlscReader1D.FEDM_ISC_TMP_BO_REQ_UID_LEN, uid.length()/2); // length of UID
reader .setData(FedmlscReader1D.FEDM_ISC_TMP_BO_BANK, (byte)0x00); // clear bank byte
reader .setData(FedmlscReader1D.FEDM_ISC_TMP_BO_BANK_BANK_NR, (byte)0x03); // user memory bank
reader .setData(FedmlscReaderID.FEDM_ISC_TMP_BO_REQ_DB_ADR_EXT, (int)5); // first block address
reader .setData(FedmlscReader1D.FEDM_ISC_TMP_BO_REQ _DBN, (byte)4); // number of blocks
// execute Read Multiple Blocks
back = reader.sendProtocol ((byte)0xB0) ;
if(back == 0x00)

{
// find the table item for specific UID
idx = reader.findTablelndex(0, FedmlscReaderConst.I1SO_TABLE, FedmlscReaderConst.DATA_SNR,
uid);
if(idx >= 0)
{
// query blocksize from table
blockSize = reader.getByteTableData(idx, FedmlscReaderConst.1SO_TABLE,
FedmlscReaderConst.DATA_BLOCKSIZE) ;
// query table data from rx buffer
data = reader.getByteArrayTableData(idx, FedmlscReaderConst.1SO_TABLE,
FedmlscReaderConst.DATA_RxDB, 5, 4);
// set data into tx buffer
reader.setTableData(idx, FedmlscReaderConst.1SO_TABLE, FedmlscReaderConst.DATA_TxDB,
5, 4, blockSize, data);
// execute Write Multiple Blocks
reader .setData(FedmlscReaderID.FEDM_ISC_TMP_BO_CMD, (byte)0x24);// sub command
back = reader.sendProtocol ((byte)0xB0);
3
¥
by
catch (Exception ex)
{
3

FEIG ELECTRONIC GmbH Seite 70 (von 104) Tutorial.docx

OBID®

Tutorial

C#
using OBID;

int back = 0;

int idx = 0;

byte blockSize = 0,
byte[] data = null;
string uid;

try
{

reader.SetData(FedmlscReaderlID.
reader.SetData(FedmlscReaderlID.
reader.SetData(FedmlscReaderID.
reader.SetData(FedmlscReaderlID.
reader.SetData(FedmlscReaderlID.
reader .SetData(FedmlscReaderID.
reader.SetData(FedmlscReaderlID.
reader .SetData(FedmlscReaderID.
reader.SetData(FedmlscReaderID.
reader.SetData(FedmlscReaderlID.
reader .SetData(FedmlscReaderID.

// settings for the next sendProtocol

FEDM_I1SC_TMP_BO_CMD, (byte)0x23);// sub command
FEDM_1SC_TMP_BO_MODE, (byte)0x00); // clear mode byte
FEDM_I1SC_TMP_BO_MODE_ADR, (byte)0x01); // addressed mode
FEDM_1SC_TMP_BO_MODE_EXT_ADR, true); // extended addressed mode
FEDM_I1SC_TMP_BO_MODE_UID_LF, true); // UID with variable length
FEDM_ISC_TMP_BO_REQ_UID, uid); /7 UID for addressed mode
FEDM_ISC_TMP_BO_REQ UID_LEN, uid.Length/2); // length of UID
FEDM_I1SC_TMP_BO_BANK, (byte)0x00); // clear bank byte
FEDM_I1SC_TMP_BO_BANK_BANK_NR, (byte)0x03); // user memory bank
FEDM_I1SC_TMP_BO_REQ_DB_ADR_EXT, (int)5); // first block address
FEDM_I1SC_TMP_BO_REQ_DBN, (byte)4); // number of blocks

// execute Read Multiple Blocks
back = reader.SendProtocol ((byte)0xB0);
if(back == 0x00)

{
// find the table item for specific UID
idx = reader.FindTablelndex(0, FedmlscReaderConst.1SO_TABLE, FedmlscReaderConst.DATA_SNR,
uid);
if(idx >= 0)
{
// query blocksize from table
reader .GetTableData(idx, FedmlscReaderConst.I1SO_TABLE,
FedmlscReaderConst.DATA_BLOCKSIZE, out blockSize);
// query table data from rx buffer
reader .GetTableData(idx, FedmlscReaderConst.1SO_TABLE,
FedmlscReaderConst.DATA_RxDB, 5, 4, out data);
// set data into tx buffer
reader .SetTableData(idx, FedmlscReaderConst.1SO_TABLE, FedmlscReaderConst.DATA_TxDB,
5, 4, blockSize, data);
// execute Write Multiple Blocks
reader .SetData(FedmlscReader1D.FEDM_ISC_TMP_BO_CMD, (byte)0x24);// sub command
back = reader.SendProtocol ((byte)0xB0) ;
3
3
3
catch (Exception ex)
{
3

FEIG ELECTRONIC GmbH

Seite 71 (von 104) Tutorial.docx

OBID® Tutorial

11.3. Excursion: Inventory with multiple antennas

The standard Inventory command operates with one antenna. This covers the capability of the
most RFID-Readers. For Readers with multiple antenna connectors and an internal multiplexer, the
Inventory command is extended to operate with specified antennas. This option can be switched
on with a flag in the mode byte.

The antenna number, where the Transponder is detected, is reflected in the returned data records.

FEDM

int back = 0;

unsigned char ucTrType = 0;
string sUid;

FEDM_1SOTabltem* pTabltem = NULL;

// settings for the next SendProtocol

reader .SetData(FEDM_ISC_TMP_BO_CMD, (unsigned char)0x01); // sub command Inventory
reader .SetData(FEDM_ISC_TMP_BO_MODE, (unsigned char)0x00); // clear mode byte

reader .SetData(FEDM_ISC_TMP_BO_MODE_ANT, true); // enable multiple antenna support
reader .SetData(FEDM_ISC_TMP_BO_REQ_ANT_SEL, (unsigned char)0x03); // antenna 1 and 2

// clear internal 1SOTable for next Inventory
reader .ResetTable(FEDM_ISC_I1SO_TABLE);

// execute Inventory
back = reader.SendProtocol (0xB0);
if(back == 0x00)
{
// query table data
for(int idx=0; idx<reader.GetTableLength(); idx++)
{
reader.GetTableData(idx, FEDM_ISC_ISO_TABLE, FEDM_ISC_DATA_TRTYPE, &ucTrType);
reader.GetTableData(idx, FEDM_ISC_ISO_TABLE, FEDM_ISC_DATA_SNR, sUid);

// additional antenna related data are only accessible with the table object
pTabltem = reader->GetlSOTableltem((unsigned int)idx);
if(pTabltem == NULL)

continue;

for(unsigned int uiCnt=0; uiCnt<pTabltem->m_ucAntCount; uiCnt++)
{

// do anything with pTabltem->m_ucAntNumber[uiCnt];

// do anything with pTabltem->m_ucAntStatus[uiCnt];

// do anything with pTabltem->m_ucAntRSSI[uiCnt];

FEIG ELECTRONIC GmbH Seite 72 (von 104) Tutorial.docx

OBID® Tutorial

import de.feig.*;

int back = 0;

byte trType = 0;

String uid;

FedmlsoTableltem tabltem = null;

try
{
// settings for the next sendProtocol
reader .setData(FedmlscReaderID.FEDM_ISC_TMP_BO_CMD, (byte)0x01);// sub command
reader .setData(FedmlscReader1D.FEDM_ISC_TMP_BO_MODE, (byte)0x00); // no option flags
reader .setData(FedmlscReader1D.FEDM_ISC_TMP_BO_MODE_ANT, true); // enable multiple antenna support
reader .setData(FedmlscReader1D.FEDM_ISC_TMP_BO_REQ_ANT_SEL, (byte)0x03); // antenna 1 and 2

// clear internal 1SOTable for next Inventory
reader .resetTable(FedmlscReaderConst. 1SO_TABLE);

// execute Inventory
back = reader.sendProtocol ((byte)0xB0) ;
if(back == 0x00)

{
// query table data
for(int i1dx=0; idx<reader.getTableLength(); idx++)
{
reader .getByteTableData(idx, FedmlscReaderConst.1SO_TABLE,
FedmlscReaderConst.DATA_TRTYPE);
uid = reader.getStringTableData(idx, FedmlscReaderConst.1SO_TABLE,
FedmlscReaderConst.DATA_SNR);
// additional antenna related data are only accessible with the table object
tabltem = (FedmlsoTableltem)reader.getTableltem(idx, FedmlscReaderConst.1SO_TABLE);
if(tabltem == NULL)
continue;
for(int cnt=0; cnt<(int)tabltem.antCount; cnt++)
{
// do anything with tabltem.antNumber[cnt];
// do anything with tabltem.antStatus[cnt];
// do anything with tabltem.antRSSI[cnt];
3
3
}
¥
catch (Exception ex)
{
}

FEIG ELECTRONIC GmbH Seite 73 (von 104) Tutorial.docx

OBID®

Tutorial

C#
using OBID;

int back = 0;

byte trType = 0;

string uid;

FedmlsoTableltem tabltem = null;

try
{
// settings for the next SendProtocol
reader .SetData(FedmlscReader1D.FEDM_ISC_TMP_BO_CMD, (byte)0x01);// sub command
reader .SetData(FedmlscReaderID.FEDM_ISC_TMP_BO_MODE, (byte)0x00); // no option flags
reader .SetData(FedmlscReaderID.FEDM_ISC_TMP_BO_MODE_ANT, true); // enable multiple antenna support
reader .SetData(FedmlscReader 1D.FEDM_ISC_TMP_BO_REQ_ANT_SEL, (byte)0x03); // antenna 1 and 2

// clear internal 1SOTable for next Inventory
reader .ResetTable(FedmlscReaderConst.1SO_TABLE);

// execute Inventory
back = reader.SendProtocol ((byte)0xBO0);
if(back == 0x00)
{

// query table data

for(int idx=0; idx<reader.GetTableLength(); idx++)

{

reader .getTableData(idx, FedmlscReaderConst.1SO_TABLE, FedmlscReaderConst.DATA_TRTYPE,
out trType);

reader .getTableData(idx, FedmlscReaderConst.I1SO_TABLE, FedmlscReaderConst.DATA_SNR,
out uid);

// additional antenna related data are only accessible with the table object
tabltem = (FedmlsoTableltem)reader.getTableltem(idx, FedmlscReaderConst.1SO_TABLE);
if(tabltem == NULL)

continue;

for(int cnt=0; cnt<(int)tabltem.antCount; cnt++)
{
// do anything with tabltem.antNumber[cnt];
// do anything with tabltem.antStatus[cnt];
// do anything with tabltem.antRSSI[cnt];

¥
¥

catch (Exception ex)

{
}

FEIG ELECTRONIC GmbH Seite 74 (von 104) Tutorial.docx

OBID® Tutorial

11.4. The application ISOHostSample

FEIG ELECTRONIC GmbH Seite 75 (von 104) Tutorial.docx

OBID® Tutorial

12. Section 6: Using TagHandler classes with Host-Mode

Programmers have two alternatives in the Reader class FEDM_ISCReaderModule (C++) resp.
FedmlscReader (Java, .NET) for the communication with Transponders:

1. Table oriented API (s. 11. Section 5: Programming for the Host-Mode)

2. TagHandler API, based on specialized Transponder classes

It is recommended to use the 2nd API for new projects. TagHandler classes are specific to
Transponder standards like ISO 14443, ISO 15693 and EPC Class 1 Gen 2 or customized for
manufacturer specific extended API. Each standard and chip type is implemented as a class and
all classes together build a hierarchical system of derived classes. Base class is
FedmlscTagHandler.

Precondition for the use of TagHandler classes is 1% the use of the methods Taglnventory and
TagSelect from the Reader class and 2™ the identifiability of the Transponder standard and/or chip
type for the accurate creation of TagHandler classes. Unsupported chip types are assigned
automatically to the base class FedmiscTagHandler.

TagHandler objects are managed by the ISOTable. Thus, they use internally the table oriented
API.

The method interface of each TagHandler class is made up of the command list of Transponder
standards or chip types. Consequently, the programmer has to work with the documentation of a
standard or with the Transponder manual from the manufacturer to understand the meaning of the
method interfaces.

12.1. Benefit

The picture below demonstrates with the example of the 1ISO 14443-A Transponder MIFARE
DESFire the method interface (left) of the TagHandler class and, after selection of the internal
interface — here: ISamCrypto — the real method interface of the Transponder. This API corresponds
nearly to the manual of the manufacturer and the programmer can apply the operations directly
with less code lines.

—

ﬂ ¢ ISoftCrypto b

% GetTagDriverType B

% GetTagHandlerType

W GetTagMame

% GetTransponderlnfo

v GetUID

W Halt

¢ IFlexSoftCrypto

@ Init

15amCrypto —
% IsCIDEnabled

w IsMADEnabled

W IsMonAddressedModeEnabled

! AbortTransaction

W Authenticate

% ChangeFileSettings
% ChangeKey

% ChangeKeySettings
% ClearRecordFile

% CommitTransaction
% CreateApplication

% CreateBackupDataFile
% CreateCyclicRecordFile
% CreatelinearRecordFile
¥ CreateStdDataFile

% CreateValueFile

W Credit

@ Debit

0 Deletefpplication

W DeleteFileA

% FormatPICC

W FreeMermory

W GetApplicationIDs

% GetCardUID

0 GetDFMames

m

FEIG ELECTRONIC GmbH

Seite 76 (von 104)

Tutorial.docx

OBID® Tutorial

12.2. Inventory and Select

The samples demonstrate the benefit when using the TagHandler concept. The number of code
lines is dramatically reduced against the use of the Table oriented API and the impact on the
programmer friendly Transponder-API is obvious. The samples support different Transponder
types in the RF field. One can see that the program flow for all Transponder types is identical.

FEDM
int back = 0;
unsigned int uiBlockSize = 0;
unsigned int uiRspDataLen = 0;
unsigned char ucData[16] // buffer for 4 data blocks of each 4 bytes
FedmlscTagHandler* pTagHandler = NULL;
FEDM_ISC_TAG_LIST* pTagList = NULL;
FedmlscTagHandler_1S014443_4_MIFARE_DESFire* pDesFire = NULL;
FEDM_I1SC_TAG_LIST_ITOR itor;
// Inventory command with standard options
pTagList = reader.Taglnventory();
for(itor = pTagList->begin(); itor != pTagList->end(); itor++)
{
pTagHandler = itor->second;
// check specialized tag handler
if(dynamic_cast<FedmlscTagHandler_1S015693*>(pTagHandler) != NULL)
{
FedmlscTagHandler_1S015693* th = (FedmlscTagHandler_1S015693*)pTagHandler ;
// read 4 datablocks from block address 5 and write same data back
back = th->ReadMultipleBlocks(5, 4, uiBlockSize, ucData);
back = th->WriteMultipleBlocks(5, 4, uiBlockSize, ucData);
¥
else if(dynamic_cast<FedmlscTagHandler_1S014443*>(pTagHandler) != NULL)
{
// execute a select command for MIFARE DESFire
// TagSelect creates a new TagHandler object internally
pTagHandler = reader.tagSelect(pTagHandler, 9);
if(dynamic_cast<FedmlscTagHandler_1S014443_4_MIFARE_DESFire*>(pTagHandler) != NULL)
{
FedmlscTagHandler_15S014443_4 MIFARE_DESFire* th =
(FedmlscTagHandler_1S014443_4_MIFARE_DESFire*)pTagHandler;
// read version information
// use of the internal Interface IFlexSoftCrypto
back = th->IFlexSoftCrypto.GetVersion(0, ucData, 16, uiRspDatalLen);
3
ks
else if(dynamic_cast<FedmlscTagHandler_EPC_Classl_Gen2*>(pTagHandler) != NULL)
{
FedmlscTagHandler_EPC_Classl_Gen2* th = (FedmlscTagHandler_EPC_Classl_Gen2*)pTagHandler;
// write new EPC to Transponder (without Password)
th->WriteEPC('0102030405060708090A0BOC™, ") ;
¥
3

FEIG ELECTRONIC GmbH Seite 77 (von 104) Tutorial.docx

OBID® Tutorial

import de.feig.*;
import de.feig.TagHandler.*;

int back = 0;

HashMap<String, FedmlscTagHandler> mapTH = null;

FedmlscTagHandler tagHandler = null;

FedmlscTagHandler_Result res = new FedmlscTagHandler_Result();// object containing result values

try
{

// Inventory with standard options
mapTH = reader.taglnventory(true, (byte)0, (byte)l);
for(Map.Entry<String, FedmlscTagHandler> e : mapTH.entrySet())

{
TagHandler = e.getValue(); // TagHandler from HashMap

if(TagHandler instanceof FedmlscTagHandler_1S015693)
{
FedmlscTagHandler_1S015693 th = (FedmlscTagHandler_1S015693) TagHandler;
// read datablocks and write same data back
back = th.readMultipleBlocks(4, 4, res);
back = th.writeMultipleBlocks(4, 4, res.blockSize, res.data);

3
else if(TagHandler instanceof FedmlscTagHandler_1S014443)

{
// execute a select command for MIFARE DESFire
// TagSelect creates a new TagHandler object internally
TagHandler = reader.tagSelect(TagHandler, 9);

if(TagHandler instanceof FedmlscTagHandler_1S014443_4_MIFARE_DESFire)
{
FedmlscTagHandler_1S014443_4_MIFARE_DESFire th =
(FedmlscTagHandler_1S014443_4_MIFARE_DESFire) TagHandler;
// read version information
// use of the internal Interface IFlexSoftCrypto
back = th.IFlexSoftCrypto.getVersion((byte)0, res);
¥
¥
else if(TagHandler instanceof FedmlscTagHandler_EPC_Classl_Gen2)
{
FedmlscTagHandler_EPC_Classl_Gen2 th = (FedmlscTagHandler_EPC_Classl_Gen2) TagHandler;
// write new EPC to Transponder (without Password)
th.writeEPC('0102030405060708090A0BOC™, ");

}
}

catch (Exception ex)

{

}

FEIG ELECTRONIC GmbH Seite 78 (von 104) Tutorial.docx

OBID®

Tutorial

c#

using OBID;
using OBID.TagHandler;

int back = 0;

byte blockSize = 0;

byte[] data = null;

Dictionary<string, FedmlscTagHandler> TagList;

Dictionary<string, FedmlscTagHandler>_ValueCollection listTagHandler;
FedmlscTagHandler TagHandler = null;

// Inventory command with standard options
TagList = reader.Taglnventory(true, 0x00, 1));

if(TagList.Count > 0)

{
listTagHandler = TagList.Values;
foreach(FedmlscTagHandler tagHandler in listTagHandler)
{
if(tagHandler != null)
{
TagHandler = tagHandler;
if(TagHandler is FedmlscTagHandler 15S015693)
{
FedmlscTagHandler_1S015693 th = (FedmlscTagHandler_1S015693)TagHandler;
// read datablocks and write same data back
back = th_.ReadMultipleBlocks(4, 4, out blockSize, out data);
back = th_WriteMultipleBlocks(4, 4, blockSize, data);
¥
else if(TagHandler is FedmlscTagHandler_1S014443)
{
// execute a select command for MIFARE DESFire
// TagSelect creates a new TagHandler object internally
TagHandler = reader.TagSelect(TagHandler, 9);
if(TagHandler is FedmlscTagHandler 15014443 4 MIFARE_DESFire)
{
FedmlscTagHandler_1S014443_4 MIFARE_DESFire th =
(FedmlscTagHandler_1S014443_4_MIFARE_DESFire)TagHandler;
// read version information
// use of the internal Interface IFlexSoftCrypto
back = th.IFlexSoftCrypto.GetVersion((byte)0, out data);
¥
¥
else if(TagHandler is FedmlscTagHandler_EPC_Classl_Gen2)
{
FedmlscTagHandler_EPC_Classl_Gen2 th = (FedmlscTagHandler_EPC_Classl_Gen2)TagHandler;
// write new EPC to Transponder (without Password)
th_WriteEPC(''0102030405060708090A0BOC™, "'");
¥
¥
3
3

FEIG ELECTRONIC GmbH Seite 79 (von 104) Tutorial.docx

OBID® Tutorial

12.3. TagHandler classes

As mentioned above, all TagHandler classes together build a hierarchical system of derived
classes with FedmiscTagHandler as base class. This is based on the fact that a Transponder with
a manufacturer specific APl extension is always based on a standard like 1ISO 15693 or ISO
14443. 1t is therefore consequent to derive such a proxy class from a class representing the 1SO
standard.

The picture below shows the first level of derivation with the base class, the derived classes
representing standards and its method interfaces.

FedmiscTagHandler
+GetTagHandler Type() : unsigned int
+GetTagDriverType() : unsigned int
+GetErrorDBAddress() | unsigned int
+ReadMultipleBlocks() : int
+ReadMultipleBlocks() : int
+WriteMultipleBlocks() : int

11

FedmiscTagHandler_ISO15693 FedmiscTagHandler_ISO14443 FedmlscTagHandler_EPC_Class1_Gen2
+GetManufacturerName() : char * +ReadMultipleBlocks() : int

+StayQuiet() : int +WriteMultipleBlocks{) : int

+LockMultiple Blocks() © int HWiteEPCY) 1 int

+ReseiToReady() : int +Kilf) it

WiiteAF1(} : int +Lock() : int

+LockAFI[) int

+WiiteDSFID() : int
+LockDSFID() : int
+GetSysteminformation() : int
+GetMultipleBlock Security Status () : int
+GetLastISOErorCode() : unsigned char

12.3.1. Life Cycle of TagHandler objects

TagHandler objects are created with the call of Taglnventory() and, for some ISO 14443
standard Transponders, with a call of TagSelect(). Provided that the next detected Transponder
type in the same table index is identical, the TagHandler object is not destroyed, but initialized.
This handling prevents continuous memory allocation.

12.3.2. Naming Conventions

The name of a TagHandler class begins always with FedmIscTagHandler followed by the standard
(like ISO 15693). Manufacturer specific extensions are reflected in the class name with a postfix of
a shortening of the manufacturer name followed by the chip type.

FEIG ELECTRONIC GmbH Seite 80 (von 104) Tutorial.docx

OBID®

Tutorial

12.3.3. Base class FedmlscTagHandler

The base class implements all methods which are common for all Transponder standards, like
Read- and WriteMultipleBlocks. But if the handling of these both methods must be adapted or the
parameter field must be extended, these methods are overwritten from specialized TagHandler

classes.

Each TagHandler class can be identified at run-time with class identification operations
(dynamic_cast with C++, instanceof with Java and is with C#) or with a constant returned by the
method GetTagHandlerType(). All TagHandler type constants are defined in the base class.

FedmlscTagHandler

+TYPE_BASIC : unsigned int =1

+TYPE_EPC_CLASS1_GENZ : unsigned int = 10

+TYPE EPC_CLASS1_GENZ IDS_SLS900A : unsigned int = 11

+TYPE_|5014443 : unsigned int = 20
+TYPE _|5014443 2 : unsigned int = 30

+TYPE |S0O14443 2 INNOVISION JEWEL : unsigned int = 31

+TYPE_|SO14443 2 STM_SR176 : unsigned int = 32

+TYPE_|S014443 2 STM SRhoo: unsigned int = 33

+TYPE_|5014443 3 : unsigned int = 40

+TYPE 15014443 3 [NFINEON MY D : unsigned int = 41

+TYPE |S0O14443 3 INFINEON MY D MOVE : igned int = 42

+TYPE_|SO14443 3 MIFARE_CLASSIC : unsigned int = 43

+TYPE_|S014443 3 MIFARE_ULTRALIGHT : unsigned int = 44

+TYPE 15014443 3 MIFARE PLUS_SL1 : unsi int=45

+TYPE 15014443 3 MIFARE PLUS SL2 : unsigned int =46

+TYPE |S014443 4: igned int = 50

+TYPE_|SO14443 4 MIFARE_DESFIRE : unsigned int = 51

#TYPE |S014443 4 MIFARE PLUS_SL1 : unsigned int = 52

+TYPE 15014443 4 MIFARE PLUS_SL2 : unsi int =53

+TYPE 15014443 4 MIFARE PLUS SL3 : unsigned int =54

+TYPE |S0O14443 4 MAXIM : igned int = 60

+TYPE_|SO14443 4 MAXIM_MAXS6000 : unsigned int = 81

#TYPE _|S0O14443 4 MAXIM _MAXS6020 : unsigned int = 62
+TYPE |S014443 4 MAXIM MAXE6040 : unsigned int = 63

+TYPE |SO15683 : unsigned int = OxECO00000
+TYPE_|SO156983 STM: i ned int = Ox EO020 (KK

+TYPE_ISO15683 STM_LRIZK : igned int = OxE 0022000

+TYPE_|S015683 STM_LRIS2K : unsigned int = 0x E0020280

+TYPE_|5015683 STM_M24LR64R : unsigned int = OxE0O202C0

+TYPE |S0O15683 NXP : unsigned int = OxE 00400}
+TYPE |SO15683 MXP ICODE_SLI: signed int = Ox E0040001

+TYPE_|SO15693 NXP_ICODE_SLI_L : unsigned int = 0xEO04(0K2

#TYPE_|S015683 NXP_ICODE_SLI_S : unsigned int = OxE0Q040006

+TYPE_|5015683 Infineon : unsigned int = Ox EQ050000

+TYPE_|5015683 Infineon_my_d : unsigned int = 0xEGOSFFFF
+TYPE _|S015683 Tl : unsigned int = OxE0070000

+TYPE_|ISO15693_TI_Tag_it HFI_Pro : unsigned int = 0xF007 EO00

+TYPE_|SO15683 T| Tag it HFI_Plus . unsigned int = OxEQGO7E000

+TYPE_|5015683 Fuijitsu : unsigned int = Ox EG0 80000
+TYPE_|5015683 Fujitsu_MBBSR 1xx : unsi int = Ox EGO80001

+TYPE |SO15693 EM : unsigned int = OxE0 160000
+TYPE_|ISO15693 FM_4034 : unsigned int = OxE0160004

+TYPE_|S015683 KSW : unsigned int = 0xEQ170000

+TYPE_IS015693 MAXIM : unsigned int = 0xE02B0000
+TYPE_IS015693 MAXIM_MAXBE100 - unsigned int = 0xE02B0010

+TYPE_|1S015683 MAXIM_MAXE6120 : unsigned int = OxE02B0020

+TYPE_|SO15683 MAXIM_MAXBE140 : unsigned int = OxE0ZB030

+TYPE_|S0O15693 |DS_SL13A : unsigned int = OxE036FFFF

+GetTagHandlerType() : unsigned int
+GetTagDriverType() | unsigned int
+GetErrarDBAddress() : unsigned int
+ReadMultipleBlocks() : int
+ReadMultipleBlocks() : int
+WriteMultipleBlocks() : int

FEIG ELECTRONIC GmbH

Seite 81 (von 104)

Tutorial.docx

OBID®

Tutorial

12.3.4. Excursion: Class FedmlscTagHandler_1S0O15693

The ISO 15693 standard is represented by the TagHandler class FedmlscTagHandler ISO15693.
Many Transponder manufacturers have extended the 1ISO 15693 standard with its own API and are
supported with derived classes.

With an Inventory the RFID-Reader specifies and returns for each detected Transponder a
Transponder type (11.1. Inventory). If an ISO 15693 compliant Transponder is detected, the next

problem is to identify the manufacturer and chip type to create the proper TagHandler object. The
ISO 15693 Part 3 specifies a manufacturer ID as part of the UID.

MZB

a4 57 | 56 40

48

‘BO IC Mfg code

IC manufacturer seral number

A chip identifier is unfortunately not specified, but most of the manufacturers use the bits above 41
to insert a chip ID. Based on this information, the proper TagHandler can be created.

The following manufacturers and Chip-Types are supported:

Manufacturer Chip-Types

STMicroelectronics SA LRI2K
LRIS2K
M24LR64-R

NXP Semiconductors I-Code SLI
I-Code SLI-L
I-Code SLI-S

Infineon Technologies AG my-d Light

Texas Instruments Tag-it HF
Tag-it HF-l Pro
Tag-it HF-1 Plus

Fujitsu Limited MB89R116
MB89R118
MB89R119

EM Microelectronic-Marin SA EM4034

KSW Microtec GmbH TempSens

Maxim MAX66100
MAX66120
MAX66140

IDS Microchip AG SL13A

FEIG ELECTRONIC GmbH

Seite 82 (von 104)

Tutorial.docx

OBID®

Tutorial

12.3.5. Excursion: Class FedmlscTagHandler_ EPC_Classl Gen2

The following manufacturers and Chip-Types are supported:

Manufacturer

Chip-Types

IDS

SL900A

FEIG ELECTRONIC GmbH

Seite 83 (von 104)

Tutorial.docx

OBID® Tutorial

12.3.6. Excursion: Classes FedmlscTagHandler_1S014443

The following manufacturers and Chip-Types are supported:

Manufacturer

Chip-Types

STMicroelectronics SA

SR176
SR1512
SRIX512
SRI4K
SRIX4K

NXP Semiconductors

MIFARE Classic 1K
MIFARE Classic 4K
MIFARE Ultralight
MIFARE Ultralight C
MIFARE DESFire
MIFARE Plus SLO..3

Innovision or other

Jewel

Infineon Technologies AG

my-d proximity SLE55Rxx
my-d move SLE

Maxim

MAX66000
MAX66020
MAX66040

FEIG ELECTRONIC GmbH

Seite 84 (von 104)

Tutorial.docx

OBID® Tutorial

12.3.7. Excursion: Class FedmlscTagHandler_1SO14443 4 MIFARE_DESFire

FEIG ELECTRONIC GmbH Seite 85 (von 104) Tutorial.docx

OBID® Tutorial

12.4. The application TagHandlerSample

FEIG ELECTRONIC GmbH Seite 86 (von 104) Tutorial.docx

OBID® Tutorial

13. Section 7: APDU Handling with 1SO 14443-4 compliant Tags

FEIG ELECTRONIC GmbH Seite 87 (von 104) Tutorial.docx

OBID® Tutorial

14. Section 8: Programming for the Buffered-Read-Mode

The Buffered-Read-Mode is an automatic read mode and the fastest way of scanning Transponder
data and is supported by many OBID i-scan® Readers. It should be preferred for applications with
short timing conditions to detect and read from a Transponder. The second advantage is the
buffering of the collected data in a First-in First-out buffer to provide the discontinuous request of

these data records.

The Buffered-Read-Mode needs polling from the host-side application for receiving the automatic
scanned Transponder data. When the Notification-Mode is enabled in the Reader (parameter:
OperatingMode .Mode), the Buffered-Read-Mode Task in the Reader is started and scans

continuously for Transponders.

With settings in the parameter group OperatingMode.BufferedReadMode.DataSelector,
the Reader can be configured to read specific data like UID, data blocks or Date/Time.

14.1. Method of operation

Programming for this synchronous operating
mode is quite simple. Programmers, following this
step-by-step explanation, illustrated with the
picture on the right side, should be well prepared
for this task.

If the Reader is detecting Transponders, data
elements are read and collected in the Reader’s
internal table (1), one record for each
Transponder. Asynchronously, the application
can query with a call of SendProtocol () (2) all
new — but not more than 255 — records from the
Reader’s table with command [0x22] Read Buffer
(3) to save them in the BRMTable of the module
FedmiscReader (4).

The final step from application-side is to query
and process the new table data (5).

[+] 192.168.10.10

Application

2

y k.

&

SendProtocol() GetTahleliemn()

FEDM_ISCReaderModule

ERMTahle

Ll

3 4
[0x22] Read Buffer [0x22] Response

¥

Reader

] \

RF-

4 Field
BRM-Task

) Transponder

N~

14.2. Programming the query cycle

14.3. Structure of the received data

FEIG ELECTRONIC GmbH Seite 88 (von 104)

Tutorial.docx

OBID® Tutorial

14.4. Adjust the method of operation

14.4.1. Excursion: Filter

14.4.2. Excursion: Adjust the structure of the data record

14.4.3. Excursion: Triggered Mode

14.4.4. Excursion: Automatic activation of outputs

14.4.5. Excursion: Writing data to the Transponder

FEIG ELECTRONIC GmbH Seite 89 (von 104)

Tutorial.docx

OBID® Tutorial

14.5. The application BRMSample

FEIG ELECTRONIC GmbH Seite 90 (von 104) Tutorial.docx

OBID® Tutorial

15. Section 9: Programming for the Notification-Mode

The Notification-Mode is an extension of the Buffered-Read-Mode and is supported by many OBID
i-scan® Readers. While the Buffered-Read-Mode needs polling from the host-side application for
receiving the automatic scanned Transponder data, the Notification-Mode transmits these data
automatically to a configurable destination (see parameter group: OperatingMode.
NotificationMode.Transmission.Destination. IPv4).

When the Notification-Mode is enabled in the Reader (parameter: OperatingMode.Mode), the
Buffered-Read-Mode Task in the Reader is started and scans continuously for Transponders.

15.1. Method of operation

Programming for this asynchronous operating
mode needs a deeper understanding of program
and data flow inside the Reader and the library. gt
Programmers, following this step-by-step
explanation, illustrated with the picture on the right £
side, should be well prepared for this task. .:é/‘;. invoke callback g

StartAsyncTask GetTableltem()

[+] 192.168.10.10

The initial step has to be the call of the method ! y

StartAsyncTask() to start an asynchronous O

task inside the library FEISC (protocol layer) and FEISC BRMTabls
to install a notification function! as an event Asvngask
handler. The asynchronous task is realized as a .

Thread.

<

]
optional:

If the Reader is detecting Transponders, data Rt
elements are read and collected in the Reader’s —
internal table (1), one record for each
Transponder. If new records are added to the

Al
[EA) send to 192.168.10.10:10005

3
Field
BRM-Task

Transponder
internal table, the Reader try to establish a =)
TCP/IP ~ connection (2) to the configured J

destination address and if this was successful, all

new — but not more than 255 — records are transmitted to the host application.

Receiver is the module FedmiscReader. He stores the new data elements in the internal
BRMTable (3)? and calls the installed event handler (4) to inform the application. The final step
from application-side is to query and process the new table data (5).

If the acknowledge option is configured in the Reader’s configuration, the asynchronous task inside
FEISC will transmit this protocol after the callback function returns (5). By default, a Reader
transmits the data records as fast as possible and is not waiting for an acknowledge®.

! In C++: callback function; in Java: listener method; in C#: delegate
2 Step (3) overwrites older data records.

® When the secured data transmission is configured, handshake is enabled by default and cannot be
disabled.

FEIG ELECTRONIC GmbH Seite 91 (von 104) Tutorial.docx

OBID® Tutorial

15.2. Register an event

Registering an event handler for notification data is realized together with the start of the
asynchronous listener task with the call of StartAsyncTask().

EEDM

void MyClass::StartAsyncTask()
{
int back = 0;
FEDM_TASK_INIT tasklnit; // task initialization structure (declared in FEDM_ISCReaderModule.h)

// mandatory: initialize task structure with O
memset(&tasklnit, 0, sizeof(FEDM_TASK_INIT));

// settings for the listener task
tasklInit.pAny = (void*)this; // pointer to anything, which is reflected as the first parameter
tasklInit.uiFlag = FEDM_TASKCB2; // specifies the callback to be used to
taskInit.uiUse = FEDM_TASKID_NOTIFICATION; // defines the task
tasklInit.iPortNr = 10005; // listener port
taskInit.uiTimeout = 0; // total timeout in seconds after receiving the first bytes of a record
// it 0, the timeout is set internally to 1s. This is enough for small
// local networks
// must be adapted to the network capabilities (Internet, GPRS, ..)
taskInit.cbFct2 = cbsFct2; // application-side provided callback function
taskInit.iNotifyWithAck = 1; // Reader waits for an acknowledge, before the next records are
// transmitted. See also 15.6. Considerations for fail-safe operation
// it is strongly recommended to enable the Keep-Alive option
tasklInit.bKeepAlive = true;
tasklInit.uiKeepAliveldleTime = 500;
taskInit.uiKeepAliveProbeCount = 5; // applicable only for Linux
tasklInit.uiKeepAlivelntervalTime = 500;

// and go..
back = reader.StartAsyncTask(&tasklnit);
if(back I= 0)
{
// error handling

}

import de.feig.*;

// MyClass must be derived from the interface FedmTaskListener
void MyClass: :StartAsyncTask()
{

FedmTaskOption tasklnit = new FedmTaskOption(); // task initialization class

// settings for the listener task

tasklInit.setlpPort(10005); // listener port

// total timeout (in seconds after receiving the first bytes of a record) is set internally to 10s
// This is enough for small local networks

// can be adapted to the network capabilities (Internet, GPRS, ..) with setlnventoryTimeout()
taskOpt.setlnventoryTimeout((byte)0);

// Reader waits for an acknowledge, before the next records are transmitted.

// See also 15.6. Considerations for fail-safe operation

taskInit.setNotifyWithAck(l);

try
{ 7/ and go..
reader .startAsyncTask(FedmTaskOption. ID_NOTIFICATION, this, tasklnit);
}
catch (Exception ex)
{
// error handling

}

FEIG ELECTRONIC GmbH Seite 92 (von 104) Tutorial.docx

OBID® Tutorial

C#
using OBID;

// MyClass must be derived from the interface FedmTaskListener
void MyClass: :StartAsyncTask()
{

taskOpt = new FedmTaskOption();

// settings for the listener task
taskOpt. IPPort = 10005; // listener port

// total timeout (in seconds after receiving the first bytes of a record) is set internally to 30s

// Reader waits for an acknowledge, before the next records are transmitted.
// See also 15.6. Considerations for fail-safe operation
taskOpt.NotifyWithAck = 1;

try
{ // and go..
reader .StartAsyncTask(FedmTaskOption.ID_NOTIFICATION, this, taskOpt);

catch (Exception ex)

{

// error handling

¥

FEIG ELECTRONIC GmbH Seite 93 (von 104) Tutorial.docx

OBID® Tutorial

15.3. Event handling

FEDM
// definition of the callback function; must be declared as a static member in the header
// iError - error code (<0) or OK (0) or reader status byte (0)
// ucCmd — command byte from notification protocol
// clPAdr - IP-Address of the reader
// i1PortNr - port number of the local port which has received the notification
void MyClass::cbsFct2(void* pAny, int iError, unsigned char ucCmd, char* clPAdr, int iPortNr)
{
MyClass* pThis = (MyClass*)pAny;
if(iError != 0)
{
// process error codes, but leave the callback as fast as possible
return;
3
switch(ucCmd)
{
case 0x22: // notification data
// process the notification, but leave the callback as fast as possible
break;
case Ox6E: // diagnostic data (keep-alive protocol from Reader)
// process diagnostic data, but leave the callback as fast as possible
break;
case 0x74: // input status
// process input status, but leave the callback as fast as possible
break;
¥
3

import de.feig.*;

/**

* Listener method for the transponder data coming with notification event.

* @param error error code (<0) or OK (0) or reader status byte (>0)

* @param remotelP IP-Address of the reader

* @param portNr port number of the local port which has received the notification

*/
public void onNewNotification(int error, String remotelP, int portNr)
{
if(iError != 0)
{
// process error codes, but leave the callback as fast as possible
return;
¥

// process the notification, but leave the callback as fast as possible
FedmBrmTableltem[] brmltems = null;

brmltems = (FedmBrmTableltem[])reader.getTable(FedmlscReaderConst.BRM_TABLE);

FEIG ELECTRONIC GmbH Seite 94 (von 104) Tutorial.docx

OBID® Tutorial

c#

using OBID;

// Listener method for the transponder data coming with notification event.

// error - error code (<0) or OK (0) or reader status byte (>0)
// remotelP - IP-Address of the reader
// portNr - port number of the local port which has received the notification

public void onNewNotification(int error, String remotelP, int portNr)
{
if(iError = 0)
{
// process error codes, but leave the callback as fast as possible
return;

}

// process the notification, but leave the callback as fast as possible
FedmBrmTableltem[] brmltems;
brmltems = (FedmBrmTableltem[])reader.GetTable(FedmlscReaderConst.BRM_TABLE);

15.4. Cancel asynchronous task

The cancelling of an asynchronous task is realized with the method CancelAsyncTask().
Internally, CancellAsyncTask() sets a flag for the listener thread to stop the process and to force
immediately finishing. CancellAsyncTask() is waiting up to 3 seconds for the thread finish event.

If the listener thread is just calling the callback function, CancelAsyncTask() returns
immediately with the error code -4084 (“FEISC: asynchronous task is busy™) and
CancelAsyncTask() has to be called again, until the return value is 0.

15.5. Adjust the method of operation

The Notification-Mode can be adjusted by a lot of parameters, collected in the Reader’s
configuration. In addition to the data elements to be read from a Transponder, trigger and filter
parameter can be set to control and reduce the amount of data records.

Three other parameters control the data transfer over the Ethernet link:

1. A handshake mode can be enabled to let the Reader wait for an acknowledge from the receiver
with the parameter (OperatingMode .NotificationMode.Transmission.
Enable_Acknowledge). When secured data transmission is configured, the handshake is
enabled by default and cannot be disabled.

2. A limitation of the number of data records to be sent with one transmission can be set with
OperatingMode.NotificationMode.Transmission.DataSetsLimit. Limitation is
recommended for slow or bad conditioned links like WLAN or GPRS. In some constellations,
the limit can be set to 1 data record to serialize the notifications for the following information
processing.

3. A connection can be kept open after a notification transmission. This hold time can be adjusted
with OperatingMode .NotificationMode.Transmission.Destination.

FEIG ELECTRONIC GmbH Seite 95 (von 104) Tutorial.docx

OBID® Tutorial

ConnectionHoldTime. With every connect to a server, a new transmit port is selected in the
Reader’'s TCP stack and is blocked for up to 2 minutes before it gets into the closed state. In
high frequented notification situations, this can cause a problem in the Reader, because the
number of ports is limited and when all ports are used, a notification cannot be sent until the

first port reaches the closed state.

15.5.1. Excursion: Writing data to the Transponder

The Buffered-Read-Mode (BRM) and the extension, the
Notification-Mode (NTFM), is an interruptible process.
The switching from NTFM to Host-Mode (HM) and back
to NTFM is controlled by the Reader protocol [OX6A] RF
On/Off.

This mode changing is also allowed after receiving a
notification and inside a callback function. It enables an
event driven writing of data into Transponders.

A typical cycle might be as illustrated in the picture on the
right side: after entering the callback function, all
Transponder events are processed in a loop. It is
important to switch back to Notification-Mode before the
callback is left.

When the callback is returned, the next notification can be
received by the library FEISC.

Although the execution of the callback interrupts the
receiving of the next notification and prevents the loss of
events, the execution time of a callback should be as little
as possible. A callback is normally a member of another

entar callback

change to Host-Mode
with [0x6A] RF On/Off

get nextrecord
fram BRMTable
with GetTahleltem()

write Transponder
data with [0xB0]0x24]

all
Transponders
processe d?

change to NTF-Mode
with [0x6A4] RF On/Off

leave callbacl

process all Transponder events

use [0xB0J[0x24] Write Multiple Blocks
with addressed mode

NOTE: leave callback as fast as possible

process and during the execution the process scheduler must share the CPU time of this process
with the callback. On the other side, as longer the execution time, as longer is the waiting time for

CancelAsyncTask() and the risk for a deadlock.

FEIG ELECTRONIC GmbH Seite 96 (von 104)

Tutorial.docx

OBID® Tutorial

15.6. Considerations for fail-safe operation

15.6.1. Keep-Alive option for detecting broken network link

When the Ethernet cable gets broken while an active communication, the server-side application
(Host) may not indicate an error while he is listening for new transmissions. On the other side, the
Reader will run in an error with the next transmission and can close and reopen the socket. But the
close and reopen will never be noticed by the Host, as he is listening at a half-closed port.

The solution for this very realistic scenario is the activating of the Keep-Alive option on the server-
side (see code examples in 15.2. Register an event).

15.6.2. Avoiding deadlock situations

When the code execution is just inside a callback function from the main process and the
application calls CanceAsyncTask() in a loop, the main process will be locked by the loop and
the callback function will never return. This is a typical deadlock situation, where a caller is waiting
for completion of a process while this process is interrupted by the scheduler.

One solution for this situation is an repetitive asynchronous call (message driven?) of
CanceAsyncTask() to close the execution path of the main process immediately, when
CanceAsyncTask() returns with -4084 (busy). This enables the scheduler to continue the
callback function.

A second and familiar situation is the closing of an application while the listener thread is still inside
the callback function. The application programmer has to be ensure that closing the application
does not interrupt the canceling of the listener thread.

FEIG ELECTRONIC GmbH Seite 97 (von 104) Tutorial.docx

OBID® Tutorial

15.7. The application NotifySample

FEIG ELECTRONIC GmbH Seite 98 (von 104) Tutorial.docx

OBID® Tutorial

16. Section 10: Programming for the Scan-Mode

16.1. Method of operation

16.2. Select the output interface

16.3. Register an event

16.4. Event handling

16.5. Adjust the method of operation

16.5.1. Excursion: Setting the data format

16.5.2. Excursion: HID (Human-Interface-Device)

16.6. The application ScanSample

FEIG ELECTRONIC GmbH Seite 99 (von 104) Tutorial.docx

OBID® Tutorial

17. Section 11: Management of the Reader configuration

17.1. Persistence of the Reader configuration

Each OBID i-scan® and OBID® classic-pro reader is controlled by parameters which are stored
grouped in blocks in an EEPROM and are described in detail in the system manual for the
respective reader. After switching on or resetting the reader, all parameters are loaded into RAM,
evaluated and incorporated in the controller.

All parameters can be modified using a protocol so that the behavior of the reader can be adapted
to the application. Ideally, the program ISOStart/CPRStart is used for this adaptation and normally
no parameters have to be changed in the application. Despite this, it can happen that one or more
parameters from a program have to be changed. This chapter should familiarize you with the
procedure using the reader class as an example.

A common characteristic of all readers is the grouping in blocks of thematically related parameters
to 14 or 30 bytes per configuration block. Each parameter cannot be addressed individually but
must always be retrieved together with a configuration block using the protocol [0x80] or [Ox8A]
Read Configuration, then modified and finally written back to the reader with the protocol [0x81] or
[0x8B] Write Configuration. This cycle must always be complied with and is also checked by the
reader class. This means that writing a configuration block without previously reading the same
block is not possible.

The reader class manages the configuration data in a byte array for data from the EEPROM and a
second byte array for data from the RAM of the reader. The differentiation is important as changes
in RAM are used immediately while changes in the EEPROM of the reader do not become active
until after a reset. Therefore the reader class has its own byte arrays for both configuration sets.

17.1.1. Physical (old) structure

17.1.2. Logical (new) structure

17.2. Read/Modify/Write of the Reader configuration

17.3. Serialization of the Reader configuration into an XML file

FEIG ELECTRONIC GmbH Seite 100 (von 104) Tutorial.docx

OBID® Tutorial

18. Section 12: Activation of outputs

FEIG ELECTRONIC GmbH Seite 101 (von 104) Tutorial.docx

OBID® Tutorial

19. Section 13: Reading states of digital inputs

FEIG ELECTRONIC GmbH Seite 102 (von 104) Tutorial.docx

OBID® Tutorial

20. Section 14: Reset methods

FEIG ELECTRONIC GmbH Seite 103 (von 104) Tutorial.docx

OBID® Tutorial

21. Section 15: Classes for external Function Units

21.1. Multiplexer (HF and UHF)

21.2. Automatic Antenna Tuner (HF)

21.3. The Application DATuningTool

21.4. People-Counter in HF-Gate-Antennas

FEIG ELECTRONIC GmbH Seite 104 (von 104) Tutorial.docx

	Note
	Content:
	Introduction
	Standard Software Tools
	The applications ISOStart and CPRStart
	Firmware-Update

	Overview of all OBID® Reader families
	- Communication interfaces
	Working Modes
	Communication Interfaces
	Transmission Protocol
	Reader-API
	Transponder-API
	Miscellaneous

	Options for integration
	Supported Operating Systems
	FEIG Kernel Driver for Windows
	Standard-Driver for USB-Reader
	PC/SC-Driver for OBID® classic-pro Reader

	FEIG-Libraries
	Function Libraries for the transport layer
	Function Library for the protocol layer
	Function Library for external Function Units (Multiplexer, Antenna Tuner)
	Function Library for T=CL based APDU handling
	Class Libraries (C++, Java, C#)

	Custom-Applications in the Reader

	Overview of all Libraries
	Function Libraries
	FECOM
	FEUSB
	FETCP
	FEISC
	FETCL
	FEFU

	Class Libraries
	FEDM
	OBIDISC4J and OBIDISC4NET

	Thread security

	Error Handling
	General preliminary notes to the sections
	Section 1: Basic initializations
	Section 2: Establish a connection to the Reader
	Serial Port (RS232 / RS485 / RS422)
	Bluetooth
	USB
	TCP/IP (LAN and WLAN)
	Excursion: Secured data transmission with encryption
	Excursion: Error handling for TCP/IP communication
	Communication errors
	Errors while establish a connection
	Errors while closing the connection
	Problem with broken communication link – the Keep-Alive option

	Excursion: Detecting Readers with different Protocol Frames in one App
	Detecting at serial port
	Detecting at USB

	Section 3: Basic knowledge about how to use SendProtocol()
	Section 4: Read of important information from Reader
	Reader Information: The method ReadReaderInfo()
	Reader Diagnostic: The method ReadReaderDiagnostic()
	Reader Configuration: The method ReadCompleteConfiguration()

	Section 5: Programming for the Host-Mode
	Inventory
	Read / Write Transponder data
	Normal addressed mode
	Extended addressed mode

	Excursion: Inventory with multiple antennas
	The application ISOHostSample

	Section 6: Using TagHandler classes with Host-Mode
	Benefit
	Inventory and Select
	TagHandler classes
	Life Cycle of TagHandler objects
	Naming Conventions
	Base class FedmIscTagHandler
	Excursion: Class FedmIscTagHandler_ISO15693
	Excursion: Class FedmIscTagHandler_EPC_Class1_Gen2
	Excursion: Classes FedmIscTagHandler_ISO14443
	Excursion: Class FedmIscTagHandler_ISO14443_4_MIFARE_DESFire

	The application TagHandlerSample

	Section 7: APDU Handling with ISO 14443-4 compliant Tags
	Section 8: Programming for the Buffered-Read-Mode
	Method of operation
	Programming the query cycle
	Structure of the received data
	Adjust the method of operation
	Excursion: Filter
	Excursion: Adjust the structure of the data record
	Excursion: Triggered Mode
	Excursion: Automatic activation of outputs
	Excursion: Writing data to the Transponder

	The application BRMSample

	Section 9: Programming for the Notification-Mode
	Method of operation
	Register an event
	Event handling
	Cancel asynchronous task
	Adjust the method of operation
	Excursion: Writing data to the Transponder

	Considerations for fail-safe operation
	Keep-Alive option for detecting broken network link
	Avoiding deadlock situations

	The application NotifySample

	Section 10: Programming for the Scan-Mode
	Method of operation
	Select the output interface
	Register an event
	Event handling
	Adjust the method of operation
	Excursion: Setting the data format
	Excursion: HID (Human-Interface-Device)

	The application ScanSample

	Section 11: Management of the Reader configuration
	Persistence of the Reader configuration
	Physical (old) structure
	Logical (new) structure

	Read/Modify/Write of the Reader configuration
	Serialization of the Reader configuration into an XML file

	Section 12: Activation of outputs
	Section 13: Reading states of digital inputs
	Section 14: Reset methods
	Section 15: Classes for external Function Units
	Multiplexer (HF and UHF)
	Automatic Antenna Tuner (HF)
	The Application DATuningTool
	People-Counter in HF-Gate-Antennas

