{}35!5@ MANUAL

OBID i-scan®

ID FEISC

Version 7.02.00

Software-Support for

OBID i-scan®and OBID® classic-pro

Operating System Target Notes

32-Bit 64-Bit

Windows XP X X) with 64-Bit OS: only with 32-Bit Runtime
Environment

Windows Vista/7/8 X X

Windows CE X

Linux X X) with 64-Bit OS: only with 32-Bit Runtime

Environment

Apple Max OS X - X OS X V10.7.3 or higher
Architecture x86_64

final

public (B)
2013-04-25
H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

Note

© Copyright 1999-2013 by FEIG ELECTRONIC GmbH
Lange Stral3e 4
D-35781 Weilburg-Waldhausen
Germany
Tel.: +49 6471 3109-0

http://www.feig.de

The indications made in these mounting instructions may be altered without previous notice. With the edition of these
instructions, all previous editions become void.

Copying of this document, and giving it to others and the use or communication of the
contents thereof, are forbidden without express authority. Offenders are liable to the
payment of damages. All rights are reserved in the event of the grant of a patent or the
registration of a utility model or design.

Composition of the information given in these mounting instructions has been done to the best of our knowledge. FEIG
ELECTRONIC GmbH does not guarantee the correctness and completeness of the details given and may not be held
liable for damages ensuing from incorrect installation.

Since, despite all our efforts, errors may not be completely avoided, we are always grateful for your useful tips.

FEIG ELECTRONIC GmbH assumes no responsibility for the use of any information contained in this manual and
makes no representation that they free of patent infringement. FEIG ELECTRONIC GmbH does not convey any license
under its patent rights nor the rights of others.

The installation-information recommended here relate to ideal outside conditions. FEIG ELECTRONIC GmbH does not
guarantee the failure-free function of the OBID® -system in outside environment.

OBID® and OBID i-scan® are registered trademarks of FEIG ELECTRONIC GmbH.
Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Windows Vista is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries

Linux® is a registered Trademark of Linus Torvalds.

Apple, Mac, Mac OS, OS X, Cocoa and Xcode are trademarks of Apple Inc., registered in the U.S. and other countries.
Electronic Product Code (TM) is a Trademark of EPCglobal Inc.

I-CODE® and Mifare® are registered Trademarks of Philips Electronics N.V.

Tag-it (TM) is a registered Trademark of Texas Instruments Inc.

FEIG ELECTRONIC GmbH Page 2 (of 124) H9391-43e-1D-B.doc

http://www.feig.de/

OBID® Manual ID FEISC V7.02.00

Licensing agreement for use of the software

This is an agreement between you and FEIG ELECTRONIC GmbH (hereafter "FEIG") for use of the ID FEISC program library and the
present documentation, hereafter called licensing material. By installing and using the software you agree to all terms and conditions of
this agreement without exception and without limitation. If you are not or not completely in agreement with the terms and conditions,
you may not install the licensing material or use it in any way. This licensing material remains the property of FEIG ELECTRONIC
GmbH and is protected by international copyright.

81 Object and scope of the agreement
1. FEIG grants you the right to install the licensing material provided and to use it under the following conditions.

2. You may install all components of the licensing material on a hard disk or other storage medium. The installation and use may
also be done on a network fileserver. You may create backup copies of the licensing material.

3. FEIG grants you the right to use the documented program library for developing your own application programs or program
libraries, and you may sell the runtime file FEISC.DLL, FEISCCE.DLL, LIBFEISC.x.y.z.DYLIB® or LIBFEISC.SO.x.y.zl without
licensing fees under the stipulation that these application programs or program libraries are used to control devices and/or
systems which are developed and/or sold by FEIG.

4. This license material can depend on third-party software. In case of the use of this third-party software the listed license
agreements in chapter Third-party Licensing agreements have to be applied.

§2. Protection of the licensing material

1. The licensing material is the intellectual property of FEIG and its suppliers. It is protected in accordance with copyright,
international agreements and relevant national statutes where it is used. The structure, organization and code of the software are
a valuable business secret and confidential information of FEIG and its suppliers.

2. You agree not to change, modify, translate, reverse develop, decompile, disassemble the program library or the documentation or
in any way attempt to discover the source code of this software.

3. To the extent that FEIG has applied protection marks, such as copyright marks and other legal restrictions in the licensing
material, you agree to keep these unchanged and to use them unchanged in all complete or partial copies which you make.

4. The transmission of licensing material in part or in full is prohibited unless there is an explicit agreement to the contrary between
you and FEIG. Application programs or program libraries which are created and sold in accordance with 81 Par. 3 of this
Agreement are excepted.

83 Warranty and liability limitations

1. You agree with FEIG that is not possible to develop EDP programs such that they are error-free for all application conditions. FEIG
explicitly makes you aware that the installation of a new program can affect already existing software, including such software that
does not run at the same time as the new software. FEIG assumes no liability for direct or indirect damages, for consequential
damages or special damages, including lost profits or lost savings. If you want to ensure that no already installed program will be
affected, you should not install the present software.

2. FEIG explicitly notes that this software makes it possible for irreversible settings and adaptations to be made on devices which
could destroy these devices or render them unusable. FEIG assumes no liability for such actions, regardless of whether they are
carried out intentionally or unintentionally.

3. FEIG provides the software ,as is“ and without any warranty. FEIG cannot guarantee the performance or the results you obtain
from using the software. FEIG assumes no liability or guarantee that the protection rights of third parties are not violated, nor that
the software is suitable for a particular purpose.

4. FEIG call explicit attention the licensed material is not designed with components and testing for a level of reliability suitable for
use in or in connection with surgical implants or as critical components in any life support systems whose failure to perform can
reasonably be expected to cause significant injury to a human.

To avoid damage, injury, or death, the user or application designer must take reasonably prudent steps to protect against system
failures.

! x.y.z represents the actual version number

FEIG ELECTRONIC GmbH Page 3 (of 124) H9391-43e-1D-B.doc

OBID® Manual ID FEISC V7.02.00

84 Concluding provisions

1. This Agreement contains the complete licensing terms and conditions and supercedes any prior agreements and terms. Changes
and additions must be made in writing.

2. If any provision this agreement is declared to be void, or if for any reason is declared to be invalid or of no effect, the remaining
provisions shall be in no manner affected thereby but shall remain in full force and effect. Both parties agree to replace the invalid
provision with one which comes closest to its original intention.

3. This agreement is subject to the laws of the Federal Republic of Germany. Place of jurisdiction is Frankfurt a. M.

FEIG ELECTRONIC GmbH Page 4 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

Third-party Licensing agreements

Licensing agreement of openSSL organization

The following license issues are to be appied in the case that encrypted data transmission is used.

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of the OpenSSL License and
the original SSLeay license apply to the toolkit. See below for the actual license texts. Actually
both licenses are BSD-style Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the Tfollowing disclaimer in the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgment:

"This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit.
(http://www._openssl._org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or promote products
derived from this software without prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL" nor may '‘OpenSSL"™ appear in their
names without prior written permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following acknowledgment:
"This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ~~AS 1S"" AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, [INDIRECT, [INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com). This product
includes software written by Tim Hudson (tjh@cryptsoft.com).

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as the following conditions are
aheared to. The following conditions apply to all code found in this distribution, be it the RC4,
RSA, lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this

FEIG ELECTRONIC GmbH Page 5 (of 124) H9391-43e-ID-B.doc

mailto:eay@cryptsoft.com

OBID® Manual ID FEISC V7.02.00

distribution is covered by the same copyright terms except that the holder is Tim Hudson
(tjh@cryptsoft.com).

Copyright remains Eric Young"s, and as such any Copyright notices in the code are not to be removed.
If this package is used in a product, Eric Young should be given attribution as the author of the
parts of the library used.

This can be in the form of a textual message at program startup or in documentation (online or
textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the Tfollowing disclaimer 1in the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgement:

"This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)"

The word “cryptographic® can be left out if the rouines from the library being used are not
cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from the apps directory
(application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ~~AS IS"" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The licence and distribution terms for any publically available version or derivative of this code
cannot be changed. i.e. this code cannot simply be copied and put under another distribution
licence [including the GNU Public Licence.]

FEIG ELECTRONIC GmbH Page 6 (of 124) H9391-43e-1D-B.doc

OBID® Manual ID FEISC V7.02.00

Contents:
Licensing agreement for use of the SOftware ... 3
Third-party LICENSING agrEEMENTScii e e et e e e e e e e e e e e e e eeaean s 5
Licensing agreement of openSSL 0rganization...........c.uuuiiiiiiiiiiieiiiie e 5
1O 0] 01 15T) £ PR 7
L NErOAUCTION e 11
T o 1 o 4= o | 13
1.2.2. WINdOWS XP /VISta T 1 8 e 13
1.1.2. WINAOWS CE ...ttt e e 13
0 T I o 1 N 13
I V= Vo @ 3 G S 13
2. Changes since the Previous VEISION ... e e e eeaeeee 14
S INSTAITALION ...t a e e 15
3.1. 32- and 64-Bit WIiNdOWS XP/VISTa/T/8..........ccooiiiiiiiiiiiiiiiii e 15
3.2, WINUOWS CE ..ottt s 16
3.3..32- @Nd B4-Bit LINUX oottt 17
G B Y| B Y = T @ 1 ST 18
4. Including into the application Program ... 19
4.1. Supported DevelopmeNnt TOOIS ... e e e eaeees 19
4.2. Incorporating into Visual StUAIOcoii i i 19
4.3. INCOrporating iNtO XCOO @ccoiieieiiiiie et e e e e et e e e e e e eeaeeaa e e e e eaeeeennnes 19
5. Programming INTEITACE ..o it e e e e e eeaennes 20
5.1, OVEIVIBW ..ttt s 20
I N =T To IR T= o U) 2SR 22
5.3, Parameter tranSTeI it 23
5.4. Asynchronous tasks for relieving the load on applicationscccccceeevieeiiiiiiieee e, 24
5.5. Event flagging to appliCAtiONSoveiiiiiiiiiiiiiiiei e 29
5.6. Secured data transmission With eNCryptioncccooeeeviiiiiiii e 30
5.6, 0. OVEIVIEW......eiiiiiiiiiiittt ettt e ettt e e e e e ettt e e e e e e e sttt et e e e e e e aennees 30
5.6.2. Feedback Of EITOI CASESoeiiiiiiiiiiiiiie e 30

FEIG ELECTRONIC GmbH Page 7 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00
5.6.3. NOtES fOr PrOQraMIMENScoiiiiiiiiiiiiiieiieeeeee ettt esnennenne 31
o 1] o) 11 1 1 o o = 32
5.7.1. Which function for which OBID i-scan® and OBID® classic-pro Reader.................... 37
5.7.2. FEISC _NEWREAUETcceiiieeiiiiii et e e e ettt s e e e e e e e e e et e s e e e e aeeeanane 39
5.7.3. FEISC _DEIEIEREAUENcceviieeeeiie et e et e et e e et e e e aa s 41
5.7.4. FEISC_GetREAUEILISTccieeeiiiiii e e ettt e s e e e e e e e e e e e eeaaanas 42
5.7.5. FEISC _GetDLLVEISIONt ittt e e e e e e et s e e e et e e e e et e e e eaan e 43
5.7.6. FEISC _GetEIOITEXL.. ..ottt e e et e e e e e 43
A B o o R O C =] 151 = (U1 I PR 44
5.7.8. FEISC_GetREAUEIPAIAceeeiiiiiiiiieiieeeeeeee ettt 45
5.7.9. FEISC_SetReaderPara.........cccoooii it 46
5.7.10. FEISC_AdAEVENTHANAIETcooeiiiiiiiiiiie e 47
5.7.11. FEISC _DelEVENTHANAIETvvueiiiieiiieee e e e e e e e e aaaeas 50
5.7.12. FEISC_SEartASYNCTASKcceeiiiiiiiiiiiiiiieee ettt eeeees 51
5.7.13. FEISC_CanCelASYNCTASKuuiiii i e e e 53
5.7.14. FEISC_TriggerASyNCTaSKccoiiiiiiiiiiieeeeeee e 54
5.7.15. FEISC _BUIldSENAPTIOIOCOIii i e e e 55
5.7.16. FEISC_BUIIdRECPIOIOCOLuiiiieiiieiiiiii ettt s s e e e e e e e e e e e e eeannee 56
5.7.17. FEISC_SplitSENAPTIOIOCO]uiiiieiiiiiiie e e et e e e eananas 57
5.7.18. FEISC_SPIItRECPIOIOCOLcciiiiiiiiiiiiiiieee e 58
5.7.19. FEISC_SendTranSParENt........cciiieeiieiiiiiii e e e e e eeeeeiiis e e e e e e e eeatea s e e e e e e e saattaeaeeeeeeessnnns 59
A T o =t 1Y O I = 1 1] o 1 60
B5.7.21. FEISC _RECEIVE ...uuuiii ettt ettt e e e e et s e e e e e e et e e e e e e e eeaaanas 61
5.7.22. FEISC_GetLastSENUPIOL........ciii et e e e e e s e e e e e e eannnes 62
5.7.23. FEISC_GetLasStRECPIOL.......coueiieei et 62
5.7.24. FEISC _GetLaSISIAE .. .icvvuiiiiiiii it e et a e e a e e e ra e 63
5.7.25. FEISC_GetLastRECPIOtLENcieiiie e e e 63
5.7.26. FEISC _GeILASIEITON ... ciiitii it e e at e e e aa e 64
I O B o =y I G) R T T o) PP 65
5.7.28. FEISC_OX1A Halt.........cooiiii e 66
5.7.29. FEISC_Ox1B_ReSetQUIEIBILeeeeiiiiiiiiiiiiiiiiiiiiiiiiiieiieieiieeeeeeeeeeeeaeeeeeeeeeeeeenenennnes 66
5.7.30. FEISC_OX1C_EASREQUEST. ...ttt ettt e e e e e e e e b e e e e e eeeeees 66
5.7.31. FEISC_Ox1F MAXDaAtaEXChaNQe.........coiiiieiiiiiiiiiei e 67
5.7.32. FEISC_0X21_ReadBUITEN........cctiiiiiiiiiiiiiiiiiiiiiiiiiee e 68
5.7.33. FEISC_0X22_ReadBUIEI.........ceviiiiiiiiiiiiiiiiiiiiiiiiii e eeeeeseeeesnennennnnnes 69
5.7.34. FEISC_0x31_ReadDataBUufferinfocccoeiiieiiiiiiiie i 70
5.7.35. FEISC _0x32_ClearDataBUffer...........ccoiiiiiiiiiiiiie e 70
5.7.36. FEISC_OX33_INIBUEI ..eeviiiiiiiiiiiiieeieeeeeeeee s nnnnnnnnnnes 71
5.7.37. FEISC_0x34 FOrceNOtfYTIHGQET ..ccouiiiii e eea e 71
5.7.38. FEISC_0X52_GetBAUM.........iiiieiiieeeiiiiie e e e et e e e e e e et e e e e e e eeeeennnes 72
5.7.39. FEISC _0x55_ StartFlashLoaderccooooeiiiiiiiiiiii e 72
5.7.40. FEISC_0x55_StartFlashLOAderEXccccoeeiiiiiiiiiiiise e eeeeeeeens 72
5.7.41. FEISC_OX63_CPURESEL......cetttiiiiiiiiiiiiiiiiiiiiiteiteeeteeiteeeeeaeaeeeaeaeeaseaseeseseessesessessnnnennes 73
5.7.42. FEISC_0OX64_SYSIEMRESEL ... ieiieeeeiiei e e e e e e e e eeeenas 73
5.7.43. FEISC _0X65 SOftVEISION ...uuuiiiieiiieeeiie e e e e e e e 74
5.7.44. FEISC_0X66_REAUEIINTOt e e e 74

FEIG ELECTRONIC GmbH Page 8 (of 124) H9391-43e-1D-B.doc

OBID® Manual ID FEISC V7.02.00
I A LT o Y I O 0) (1 T == S 75
5.7.46. FEISC_OX6A _RFONOM...cci i 75
5.7.47. FEISC_Ox6B_CentraliZEARFSYNC.........ccuviiiiiiiiiiiiiiiiiiiiieeiiiiieieeeieeeeaeaeseenennesnnnnnnnnnne 76
5.7.48. FEISC_OX6C_SetNOISELEVEIccceiieeiiiiei et e e e e eaaees 77
5.7.49. FEISC_OX6D_GEtNOISELEVEI.......ceeveiiiiiiiiiiiiiiiiiiiiiiiieeeieeeieeeeeeeeeeeeaeeeeeeennsnennnnnnnnes 77
5.7.50. FEISC_OXBE_RADIAYc.coveveveeeeveeeeeeeeteeeeeeeteeeeeeee et eeeeesteesteseseen s ensae s sneeneae s 78
5.7.51. FEISC _OX6F ANteNNAaTUNINGccooiiiiiiiiie e e e e e e e et e e e e e e e e ereaaaaaas 78
5.7.52. FEISC_OX71_SEtOULPUL.....ccutuuiiieeeieeiiiite ettt ettt e e e e e eeerbba e e e eaeeennnes 79
5.7.53. FEISC_OX72_SetOULPUL.....cceeiiiiieeieeeee ettt eeeees 79
5.7.54. FEISC_OX74_ReadlNPULccooiiiiiiiiiiie e 80
5.7.55. FEISC_OX75_AdJANTENNA ...ccooiiiiieiiee e 80
5.7.56. FEISC_OX76_CheCKANTENNAS........cciieeiiiiieis e eee et e e e e e ettt s e e e e e e eeaaesasaaeaaaeaenees 81
5.7.57. FEISC_0x80_ReadConfBIOCK.............cuuiiiiiiiiiie et 82
5.7.58. FEISC_0x81 WIriteCONBIOCK.......ccciiiiiiiiiiii i e e e 82
5.7.59. FEISC _0x82_SaveCoNfBIOCKccouiiiiiiii e 83
5.7.60. FEISC_0x83 ReSEetCONIBIOCKcceeeiiiiiiii i e et e e e e aaenees 83
5.7.61. FEISC _OX85 SEtSYSTIMEN ..uuuuiiiiiiiiieeeiiiie it et e e e e e e e e e e e e e et e e e e aaeeaanees 84
5.7.62. FEISC_OX86 _GetSYSTIMEN ...ccciiiiiieee e ettt 84
5.7.63. FEISC_0OX87_SetSYStemMDalecccuvuiiiiiiiii i e e e e e 85
5.7.64. FEISC_0OX88_GetSYSteMDALE.......ccvviiiiiiiiiiiiiiiiiiiieeeeeeestesseeaeseesessessssnessessennsnnnnnnnnnne 85
5.7.65. FEISC_O0x8A ReadConfiguration.............ccccooeiiiiiiiiiii e e e e e eeeens 86
5.7.66. FEISC_0x8B_WriteConfigUration.............ccouiiiiiiiiiiie e eee et e e e e 87
5.7.67. FEISC_Ox8C_ResetConfiguration.............cccccoeiiiiiiiiiiiiiee e eeaeeeanns 88
5.7.68. FEISC_Ox9F_Piggyback_Command................euuurrremmiemeeeiiiiiiiiiiieiinieieeinieenesinnennennnes 89
5.7.69. FEISC_OXAOD _RALOGINciiiiiiiiii ettt e e e et s e e e e e e e et s e e e aeeeannnes 90
5.7.70. FEISC_OXA2_WriteMIfareKeYsSccooiiiiiiiiii i 91
5.7.71. FEISC_OXA3_WTrite_DES AES KEYS.....cetttiiiiiiiiiiieieieiieeieeeeneeennsessssnnnnnssnnnsnnnnnnnnnne 92
5.7.72. FEISC_OxAD_WriteReaderAuthentKeYccoooeiiiiiiii e 93
5.7.73. FEISC_OXAE_ReEaderAUtNENT........ceviiiiiiiiiiiiiiiieitieieeeeetieeeeeeeeeeeeeeeeeeeaeseenennesnennnnnnnnes 94
5.7.74. FEISC_OXBO_ISOCMU.......coeovitieeiteeeteeeeeeeeee et en e 95
5.7.75. FEISC_OxB1_ ISOCUStANAPIOPCIMU......ciiiiiiiiiiiiiieeeiieeeeeeiieeeieeeeeeeeeeaeeeeseeeesnennennnnnes 96
5.7.76. FEISC_OXB2_ISOCMA.......cceiiiiiiieieeeceee e 97
I A R o Y 1 O 0) (= 3 R =1 = O 1 1 1 o 98
5.7.78. FEISC_OXB4 EPC_UHF_CM0ooviviicieeeeeeeeeeeeeeeeee e 99
5.7.79. FEISC_OxBB_C1G2_TranspCmd.......cccceiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee e 100
5.7.80. FEISC_OXBC_CMAQUEUEcoeiiiiiiieiiiiieeee et 101
5.7.81. FEISC_OXBD_ ISOTranSpCmMd........ccooiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeee et 102
5.7.82. FEISC_OXBE_ ISOTransSpCMAccuuuiiiieiiiiiiiiiiie e eee et e e e eeets e e e e e eeeeannnn s 103
5.7.83. FEISC_OXBF_ ISOTranSPCIMAceeviiiiiiiiiiiiiiiiiiieeeeeieieeeeseeeesssseesssssssnnssnssssnsnnnnnnes 104
5.7.84. FEISC_0OxCO_SAMCmd, FEISC_0xCO_SAMCMA_SYNC.........ccevvvververiiiiireineennnnnn, 105
5.7.85. FEISC_OXC1_DESFIr€@CMAceiiiiiiiiiiiiiiiiiiiiiiiieiiiieeeeeeeeeeeeeeeeesessesesssassessessssnsnnnnnnes 106
5.7.86. FEISC_OXC2_Mifar€PIUSCMQ........coeiviiiiiiiiiiiiiiiiiiieeeeeiieeeeseseseseesesssssssassnsssssssnnnnnnes 106
5.7.87. FEISC_OXC3 _DESFIr€@CMAceiiiiiiiiiiiiiiiiiiiiiiiiitiiieeieeeeeeeeeeaeeeeveeeseessaeaesseeenensnnnnnne 107

5.8. Support for MUltithreadingcooovuiiiii e 108

O Y o] o 1= [1 U PP SURPPPPPRTTR 110

FEIG ELECTRONIC GmbH Page 9 (of 124) H9391-43e-1D-B.doc

OBID® Manual ID FEISC V7.02.00

8.1, EXTOFN COURS ...ttt ettt e e e e e e e e e e e e e et e e e e e e s 110
6.2. LISt Of VAITADIES ... 112
6.3. List of constants for the FEISC_EVENT _INIT StruCtUreccooeeevvvviiiiiiiiiee e 113
6.4. List of constants for TaskID and for the FEISC_TASK_INIT structure..........ccccvvuunn... 113
LR T o 153 (0] SRR 115

FEIG ELECTRONIC GmbH Page 10 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

1. Introduction

The support package ID FEISC is intended to support in programming application software by
integrating OBID i-scan® - and/or OBID® classic-pro Readers, and supports ANSI-C, ANSI-C++
und essentially any other language which can invoke C functions.

The support package provides a simple function interface for the OBID® Reader. Each protocol
documented in the system manuals the OBID® Reader Families has its own function. For data
transmission, one of the libraries from the transport layer (FECOM, FEUSB, FETCP) is bound
dynamically at run time.

This library package can be used with the following Operating Systems:

Operating System Target Notes
32-Bit 64-Bit
Windows XP X X) with 64-Bit OS: only with 32-Bit Runtime Environment
Windows Vista/7/8 X X
Windows CE X
Linux X X) with 64-Bit OS: only with 32-Bit Runtime Environment
Apple Max OS X - X OS X V10.7.3 or higher
Architecture x86_64

The library FEISC is part of the second level of a hierarchical structured, multi-tier FEIG library
stack. It is only designed for executing Reader commands over the low-level protocol layer
(build/split of frames, check of CRC, check of frame length). The following picture shows the multi-
tier library stack.

C#Application C++ Application Java Application
Windows, Windews CE Windows, Windows CE, Linm, ‘Windows. Windows CE,
ambadied Linu, Max 05 X Linue, ambaddad Linus

e

KML-File with

Java Matlve Interface Reader Configuration
Profile

Managed C++, Plnvoke

XML-File with
Reader Flrmwars

XML-File with
Reader
Configuration

Application-Level

Protocol-Level

Port-Level

System Driver System Driver

FEIG Diver

FEIG ELECTRONIC GmbH Page 11 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

Applications, based on the layer of FEISC can execute each Reader command. As the library
manages no exchanged data, the implementation complexity increases when an Autoread-Mode
(Buffered-Read-Mode or Notification-Mode) is enabled and every Programmer should calculate the
costs for implementation. C++ Programmers should choose the FEDM class library from the next
level as the best API.

FEIG ELECTRONIC GmbH Page 12 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

1.1. Shipment

This support package consists of files listed in the tables below. Normally, this package is shipped
together with other libraries in a Software Development Kit (SDK) — e.g. ID ISC.SDK.Win.

1.1.1. Windows XP /Vista/7/8

File Use

FEISC.DLL DLL with all functions

FEISC.LIB LIB file for linking with C/C++ projects
FEISC.H Header file for C/C++ projects

1.1.2. Windows CE

File Use

FEISCCE.DLL DLL with all functions

FEISCCE.LIB LIB file for linking with C/C++ projects
FEISC.H Header file for C/C++ projects

1.1.3. Linux

File Use

LIBFEISC.SO.x.y.z2 Function library

FEISC.H Header file for C/C++ projects

1.1.4. Mac OS X

File Use
LIBFEISC.x.y.z.dylib? Function library
FEISC.H Header file for C/C++ projects

% x.y.z. represents the version number of the library file

FEIG ELECTRONIC GmbH Page 13 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

2. Changes since the previous version

¢ Modifications for FEISC_StartAsyncTask:

a) While initializing the asynchronous Task for Reader’s Notification-Mode, the Listener Port
must be unused in the system. Otherwise, the new error code -4086 is returned.

b) The Listener Port for Reader’s Notification-Mode accepts only one connetion at the same
time. All additional connections will be rejected.

Please note also the revision history in the Appendix to this document.

FEIG ELECTRONIC GmbH Page 14 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

3. Installation

Normally, this package is shipped together with other libraries in a Software Development Kit
(SDK). Copy the SDK into a directory of your choice.

The files of this library package can be found in the sub-directory feisc-lib.

3.1. 32- and 64-Bit Windows XP/Vista/7/8

4} IDISC.SDK.Win v4.02.00 If you won't add your projects to the Samples path, we
fecom-lib recommend the following steps:
fedm-classlib

e Copy FEISC.DLL into the directory of the application

(el program (recommended) or into the Windows system
4 i feisc-lib directory.
4 bin
" e Copy FEISC.LIB into the project or LIB directory.
86 e Copy FEISC.H into the project or INCLUDE directory.
fj':'c e In the case that encrypted data transmission is used,
include copy the library file libeay32.dll into the directory of the
fEt""'l_’ application. The license issues of openSSL have to be
fetcp-lib considered (http://www.openssl.org).
feusb-lib
Run
Samples

FEIG ELECTRONIC GmbH Page 15 (of 124) H9391-43e-ID-B.doc

http://www.openssl.org/

OBID®

Manual

ID FEISC V7.02.00

3.2. Windows CE

4 ID ISC.5DEWInCE Mobile & V4.0.5
dotnet
fecom-lib
fedm-classlib

4 feisc-lib
4 bin_ce
4 armvedi
4 mobiledl
ws2005
doc
fetcp-lib

run

If you won’t add your projects to the Samples path, we

recommend the following steps:

e Copy FEISCCE.DLL into the application directory or
system directory of the Windows CE system.

e Copy FEISCCE.LIB into the project or LIB directory.

o Copy FEISC.H into the project or INCLUDE directory

Note: you cannot use the DLL together with eMbedded Visual Basic 3.0.

FEIG ELECTRONIC GmbH

Page 16 (of 124)

H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

3.3. 32- and 64-Bit Linux

4 | IDISC.SDIE Linux V4.,02.00 Choose one option for installation:
C++
fecom-lib Option _1: If an install.sh is shipped inside the SDK root

directory, execute this install script. It will copy all library files
into the directory /ust/lib and creates symbolic links for each

fedm-classlib

P :T:c__l:i library file. The header file can be copied into a directory of
: your choice.
4 bin
x86 Option 2: Copy all files of this support package into a
doc directory of your choice and create symbolic links for
include libfeisc.so.x.y.z> in the directory /ust/lib with the following
fetcl-lib calls:
fetcp-lib
feush-lib cd /usr/lib

In —s /<your_directory>/libfeisc.so.x.y.z libfeisc.s0.x
In —s /<your_directory>/libfeisc.so.x libfeisc.so

Idconfig

In the case that encrypted data transmission is used the
library file libcrypto.so must be installed. The license issues
of openSSL have to be considered (http://www.openssl.org).

Note: The library is compiled under SUSE Linux 11.1 with the GNU Compiler Collection V4.3.2.

® x.y.z represents the version number

FEIG ELECTRONIC GmbH Page 17 (of 124) H9391-43e-ID-B.doc

http://www.openssl.org/

OBID® Manual ID FEISC V7.02.00

3.4. 64-Bit Mac OS X

4 | IDISC.SDK.MacOSK V4.02.00 Choose one option for installation:

fedm-classlib

2} foeclib Option 1: If an install.sh is shipped inside the SDK root
directory, execute this install script. It will copy all library files

4 bi
" into the directory /usr/local/lib and creates symbolic links for
¥86_64 . . . o
J each library file. The header file can be copied into a
_ o directory of your choice.
include
fe’fc"'”f' Option 2: Copy all files of this support package into a
fetep-lib directory of your choice and create symbolic links for
feusb-lib libfeisc.x.y.z.dylib* in the directory /usr/localllib with the
samples following calls:cd /usr/local/lib

In —s libfeisc.x.y.z.dylib libfeisc.x.dylib
In —s libfeisc.x.dylib libfeisc.dylib

Note: The library is compiled under Mac OS X V10.7.3 with Xcode V4.3.2 and is compatible with
the architecture x86_64.

* x.y.z represents the version number

FEIG ELECTRONIC GmbH Page 18 (of 124) H9391-43e-ID-B.doc

OBID®

Manual

ID FEISC V7.02.00

4. Including into the application program

4.1. Supported Development Tools

Operating System Development Tool Supported
Windows XP / Vista/ 7 /8 Visual Studio 6 on request
Visual Studio 2005 / 2008 / 2010/ 2012 yes, Professional Version or higher
required
Borland C++ Builder on request
Embarcadero C++ Builder on request
Windows CE eMbedded Visual C++ 4 yes
Visual Studio 2005 / 2008 yes, Professional Version or higher
required
Linux GCC yes, for 32-Bit projects
Mac OS X GCC yes, for projects with x86_64 architecture

Xcode 2 V4.3.2

yes, for projects with x86_64 architecture

4.2. Incorporating into Visual Studio

1. Add Include path for the header file in project settings (category C/C++)

2. Add feisc.lib (optional with path) in project settings (category Linker)

4.3. Incorporating into Xcode

1. Add path for the header file in project settings (User Header Search Paths in category

Search Paths)

2. add feisc.dylib with drag’n drop to your project

ID FECOM and/or ID FEUSB and/or ID FETCP must also be incorporated into your project if you
want to invoke functions from them.

In the case that encrypted data transmission is used the library file libeay32.dll (Windows) or

libcrypto.so (Linux) must be installed. The license issues of openSSL have to be considered

(http://www.openssl.orqg).

FEIG ELECTRONIC GmbH

Page 19 (of 124)

H9391-43e-ID-B.doc

http://www.openssl.org/

OBID® Manual ID FEISC V7.02.00

5. Programming Interface

5.1. Overview

The FEISC library encapsulates for the programmer all the functions and parameters necessary
for simple communication with readers in the OBID i-scan® - or OBID® classic-pro Reader Family.
Together with the support package ID FECOM, ID FETCP or ID FEUSB, this makes it possible to
run all the protocols in the system manual of the OBID i-scan® - or OBID® classic-pro Reader
Family directly by invoking a function.

The functions in FEISC are responsible only for internal administration, protocol building, protocol
splitting and any necessary error outputs. The FEISC library alone is not enough to communicate
with an OBID i-scan® - or OBID® classic-pro Reader. You can however initiate the output of a
protocol and use the FECOM to communicate with an OBID i-scan® - or OBID® classic-pro Reader
over an asynchronous serial interface or the FETCP to communicate with a TCP/IP-Server or the
FEUSB to communicate through the USB port. Other interface drivers can be integrated with the
Plug-In mechanism.

Use of the FEUSB for communicating with OBID® USB devices is mandatory.

The core elements of the library are the Object Manager and the Reader objects generated during
runtime.

The Object Manager implements self-administration which frees an application program from
having to buffer any values, parameters or other settings: It keeps a list with all generated Reader
objects. The Reader object is the central program section that carries out the protocol functions
and is assigned a connection to the serial interface when using the FECOM or a channel to a USB
device when using the FEUSB or a TCP/IP-Server when using the FETCP. Each Reader object
administers all the parameters relevant to its protocol tasks within its local memory.

Before first using you must create a Reader object using the FEISC_NewReader function. If this
done without error, the return value includes a handle which is used by the application program as
an access number. This handle is required for unique identification of the generated Reader
object. If you are using self-administration, the Object List can be called up using the
FEISC_GetReaderList function. The successive handles which you then get can be used to read
out all the parameters pertaining to this object using the FEISC_GetReaderPara function.

A Reader object generated using FEISC_NewReader must always be deleted from memory using
the REISC_DeleteReader function.

If an application program is opened multiple times, each program (instance) gets an empty object
list by invoking FEISC_GetReaderList. This prevents mixing up access rights under different
program instances.

The object-oriented internal structure (see Fig. 1) is externally visible as a function interface,
making it language-neutral.

FEIG ELECTRONIC GmbH Page 20 (of 124) H9391-43e-1D-B.doc

OBID® Manual ID FEISC V7.02.00

FEISC FECOM
Reader Object
Object Manager - ReaderHandle
- PortHandle
[FEISC_NewReader List qf reader handles - Parameter
- Version number Port Object
[FEISC_DeIeteReader -
Reader Object
[FEISC_GetReaderList < > _ ReaderHandle
- PortHandle
[FEIsc_getpLLVersion _ Parameter
[FEISC_GetReaderPara
[FEISCﬁSetReaderPara
[FEISC_BuiIdPromcoI L
[FEISC_SpIilProtocol
° FEUSB
[FEISC_SendTransparem
[FEISCﬁGetLastSendProt °
[FEISCﬁGetLastRecProt
[FEISCﬁGetLaStStatus
Reader Object
FEISC_Ox1A_Halt
< - ReaderHandle Device Object
) - PortHandle
[] - Parameter
[FEISCﬁOxBFﬁISOTranspCmd

Fig. 1: Internal structure of FEISC

Fig. 1 shows how several Reader objects can share a common serial interface in FECOM or a
common channel in FEUSB. No conflicts will occur as long as access to the port object takes
place sequentially within a work thread. In a multi-reading or multi-process environment however
appropriate measures have to be taken. These are not implemented in FECOM, FETCP, FEUSB
or FEISC.

Nearly all the library functions have a return value which is negative in case of error.

FEIG ELECTRONIC GmbH Page 21 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

5.2. Thread security

In principle, all FEIG libraries are not fully thread safe. But respecting some guidance, a practical
thread security can be realized allowing parallel execution of communication tasks. One should
keep in mind, that all OBID® RFID-Reader works synchronously and can perform commands only
in succession.

On the level of the transport layer (FECOM, FEUSB, FETCP) the communication with each port
must be synchronized in the application, as the Reader works synchronously. Using multiple ports
and so multiple Readers from different threads simultaneously is possible, as the internal port
objects acts independently from each other.

On the level of the protocol layer (FEISC), parallelism can be realized, when each Reader object
represents exactly one physical Reader and is bound with an individual communication port. This
is not true for the four specialized functions FEISC_BuildxxProtocol and FEISC_SplitxxProtocol,
which use an internal global buffer for protocol data.

FEIG ELECTRONIC GmbH Page 22 (of 124) H9391-43e-1D-B.doc

OBID® Manual ID FEISC V7.02.00

5.3. Parameter transfer

Some functions support parameter transfer both as a null-terminated string and as an array of hex
numbers. Transfer as data type UCHARX is possible for both data types. Interpretation of the
transfer value is indicated by the function parameter iDataFormat.

iDataForm Parameter transfer interpreted as a pointer to
at
0 0x23, 0x56, OxFA, OxA6 an array of UCHAR

(internally 0x23 corresponds to the character "#";
0x56 to the character "V"; etc.)

1 "2356FAAG" a null-terminated string
(each two characters are interpreted as a hex
value: Example: "23" -> 0x23)

All other parameters to be transferred as UCHAR must be given as a hex value (e.g. 0x23). It is
not possible to transfer by strings!

Note: UCHAR is used as an abbreviation (#define) for ,unsigned char*.

FEIG ELECTRONIC GmbH Page 23 (of 124) H9391-43e-1D-B.doc

OBID® Manual ID FEISC V7.02.00

5.4. Asynchronous tasks for relieving the load on applications

A recurring task of applications is inventorying transponders in the antenna field of the reader.
Ideally this should run in the background and then tell the application when transponders are in the
field or when the notification has arrived.

This is precisely the functionality you can implement using the FEISC_StartAsyncTask function.
Internally a thread is started which waits for the reply protocol of the reader and provides the reply
data to the application using a callback function.

Asynchronous tasks are defined for two types of applications: for inventory in host mode or for
receiving Buffered-Read-Mode data in Notification Mode.

Asynchronous tasks can be specified for multiple Readers at the same time as long as they were
given their own object in the DLL using FEISC_NewReader. Readers on an RS485 bus are
problematic. In this case you can only “monitor” one Reader at a time, since they are all connected
on the same interface.

The features of the tasks are described in the table below:

Task TaskID Remarks
One-time FEISC_TASKID_FIRST_NEW_TAG A task can only started if the following option is integrated in the
Inventory Reader’s firmware: the Reader protocol [0xB0][0x01] Inventory must

support an optional NOTIFY flag in its Mode byte.

After receiving the Reader protocol within the specified time, the task
automatically closes itself. If the time is exceeded, the callback function
is invoked and the status 0x01 (No transponder in read field) send and
the task ended. In case of error the task is always ended immediately
and the callback function transmits the error code.

Serial, USB and TCP/IP interfaces are supported, whereby the ports
must be open before starting the task. Autonomous opening of the
connection via TCP/IP by the Reader or a suitable converter for sending
the data is not possible.

Callback-Function in FEISC_TASK_INIT: cbFctl

The response data in ucRspData are structurally adequate according to
the protocol response [0xB0O] [0x01] ISO Command Inventory, which is
documented in the Reader’s system manual.

Repeating FEISC_TASKID_EVERY_NEW_TAG The same conditions as for one-time inventory apply, with the following
Inventory difference:

Repeating inventory defines a cyclical task which can only be cancelled
by FEISC_CancelAsyncTask. A cycle corresponds to a one-time
inventory and ends on a wait loop until the next cycle has been triggered
by the application using FEISC_TriggerAsyncTask. Application-side
triggering ensures that an application has time for receiving and
processing the inventory data.

Callback-Function in FEISC_TASK_INIT: cbFctl

The response data in ucRspData are structurally adequate according to
the protocol response [0xBO] [0x01] ISO Command Inventory, which is
documented in the Reader’s system manual.

FEIG ELECTRONIC GmbH Page 24 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

A task should only be started if the Notification Mode is integrated and

activated in the Reader’s firmware. Only TCP/IP communication is

supported. Possible connection options are (see system manual for the

Reader):

- Temporary opening of the connection by the Reader for the duration
of data transmission

- Continuous opening of the connection by the Reader (in
development)

- Continuous opening of the connection by the host (in development)

The task defines an endless task which can only be cancelled using
FEISC_CancelAsyncTask or in case of error during the initialization
phase is ended immediately after invoking the callback function.

The task waits for reception of the Buffered-Read-Mode data and then
invokes the callback function. After the callback function returns, data
can immediately be received again by the Reader.

In case of transmission errors the callback function is invoked with the
error code and the receiving procedure then resumed. If the Keep-Alive
option is activated (recommended), then the listener socket is closed
automatically after a break of the network cable or after loss of power
and is recovered again. This ensures the reliability of the network
connection.

Note: Depending on the Reader setting large quantities of data may be
sent by the Reader in very short time intervals. Without use of a
handshake procedure (see system manual for the Reader) data may be
lost if the host is not appropriate for the quantity of notifications.

Callback-Function in FEISC_TASK_INIT: cbFctl and cbFct2

The response data in ucRspData are structurally adequate according to
the protocol response [0x21] Read Buffer rsp. [0x22] Read Buffer, which
is documented in the Reader’s system manual.

Receiving FEISC_TASKID_NOTIFICATION
notifications

SAM FEISC_TASKID_SAM_COMMAND
communication

A single task for communication with a SAM (Security Application
Module) inside an OBID® classic-pro Reader with SAM-Socket is
executed with the function FEISC_0xC0_SAMCmd.

After receiving the Reader protocol within the specified time, the task
automatically closes itself. If the time is exceeded, the callback function
is invoked with the error code -4082 (FEISC_ERR_TASK_TIMEOUT)
and the task ended. In case of error the task is always ended
immediately and the callback function transmits the error code.

Serial and USB interfaces are supported, whereby the ports must be
open before starting the task.

Callback-Function in FEISC_TASK_INIT: cbFctl

The response data in ucRspData are structurally adequate according to
the protocol response [0xCO] SAM Commands, which is documented in
the Reader’s system manual.

FEIG ELECTRONIC GmbH

Page 25 (of 124) H9391-43e-1D-B.doc

OBID®

Manual ID FEISC V7.02.00

A single task for launching a [0xBC] Command Queue inside an OBID®
classic-pro Reader is executed with the function
FEISC_0xBC_CmdQueue.

After receiving the Reader protocol within the specified time, the task
automatically closes itself. If the time is exceeded, the callback function
is invoked with the error code -4082 (FEISC_ERR_TASK_TIMEOUT)
and the task ended. In case of error the task is always ended
immediately and the callback function transmits the error code.

Serial and USB interfaces are supported, whereby the ports must be
open before starting the task.

Callback-Function in FEISC_TASK_INIT: cbFctl

The response data in ucRspData are structurally adequate according to
the protocol response [0xBC] Command Queue, which is documented in
the Reader’s system manual.

Command FEISC_TASKID_COMMAND_QUEUE
Queue
MAX Event FEISC_TASKID_MAX_EVENT

A task should only be started if Access Mode is integrated and activated
in the Reader’s firmware. Only TCP/IP communication is supported with
a temporary connection initiated by the Reader.

The task defines an endless task which can only be cancelled using
FEISC_CancelAsyncTask or in case of error during the initialization
phase is ended immediately after invoking the callback function.

The task waits for reception of the event data and then invokes the
callback function. After the callback function returns, data can
immediately be received again by the Reader.

In case of transmission errors the callback function is invoked with the
error code and the receiving procedure then resumed. If the Keep-Alive
option is activated (recommended), then the listener socket is closed
automatically after a break of the network cable or after loss of power
and is recovered again. This ensures the reliability of the network
connection.

Callback-Function in FEISC_TASK_INIT: cbFct3

The response data in ucRspData are structurally adequate according to
the protocol response [0x1F] [0x05] Read Table for TableID = 0x05
(EventTable), which is documented in the Reader’s system manual.

People Counter | FEISC_TASKID_PEOPLE_COUNTER
Event

A task should only be started if the Notification Mode is integrated and
activated in the Reader’s firmware and at least one external Function
Unit of type ID ISC.ANTGPC (People Counter) is connected.

The internal handling of the task is identical to Notification. Thus, the
spec for this task is identical as for FEISC_TASKID_NOTIFICATION.

A People Counter Event needs no handshake mechanism.
Callback-Function in FEISC_TASK_INIT: cbFctl and cbFct2

The response data in ucRspData are structurally adequate according to
the protocol response [0x77] Get Counter, which is documented in the
system manual of GatePeopleCounter.

FEIG ELECTRONIC GmbH Page 26 (of 124) H9391-43e-1D-B.doc

OBID® Manual ID FEISC V7.02.00

The internal behavior is determined essentially by the structure FEISC_TASK_INIT, which is sent
using FEISC_StartAsyncTask. Among other things it contains the necessary parameters for the
callback function:

typedef struct _FEISC_TASK_INIT

{
void* pAny; /I pointer to anything, which is reflected as the first parameter
// in the callback function (e.g. can be used to pass the object pointer)
unsigned char ucBusAdr; /1 busaddress for serial communication
unsigned int uiChannelType; /I defines the channel type to be used
int iConnectByHost; //'if 0: TCP/IP connection is initiated by reader. otherwise by host
char clPAdr[16]; /I server ip address
/I note: only for channel type FEISC_TASK_CHANNEL_TYPE_NEW_TCP
int iPortAdr; /I server or host port address
/I note: only for channel type FEISC_TASK_CHANNEL_TYPE_NEW_TCP
UINT uiTimeout; // timeout for asynchronous task in steps of 100ms or
// timeout for notification task in steps of 1s
UINT uiFlag; 1/ specifies the use of the union (e.g. FEISC_TASKCB_1)
/I only for authentication in notification mode
bool bCryptoMode; /I security mode on/off
unsigned int uiAuthentKeyLength; // authent key length

unsigned char ucAuthentKey[32]; // authent key

/I only for notification or max event mode

bool bKeepAlive; /I if true, keep alive option will be enabled (recommended)

unsigned int uiKeepAliveldleTime; // wait time in ms for first probe after connection is dropped down
/[for Linux: time is rounded up to seconds

unsigned int uiKeepAliveProbeCount; // only for Linux: number of probes

I for Windows Server 2003, and XP it is fixed to 5 by Microsoft

[/ for Windows Vista and later it is fixed to 10 by Microsoft
unsigned int uiKeepAlivelntervalTime; // wait time in ms between probes

/I for Linux: time is rounded up to seconds

union

/I for notification and inventory task, SAM and Queue Command response, People Counter event

void (*cbFctl)(void* pAny, /I Tin] pointer to anything (from struct _FEISC_TASK_INIT)
int iReaderHnd, [/ Tin] reader handle of FEISC
int iTaskID, /I [in] task identifier from FEISC_StartAsyncTask(..)
int iError, /I [in] OK (=0), error code (<0) or status byte from reader (>0)
unsigned char ucCmd, [/ [in] reader command
unsigned char* ucRspData, // [in] response data
int iRspLen); /I Tin] length of response data
// only for notification task and People Counter event
void (*cbFct2)(void* pAny, [l [in] pointer to anything (from struct _FEISC_TASK_INIT)
int iReaderHnd, /I Tin] reader handle of FEISC
int iTaskID, [/ Tin] task identifier from FEISC_StartAsyncTask(..)
int iError, /I [in] OK (=0), error code (<0) or status byte from reader (>0)
unsigned char ucCmd, /I [in] reader command
unsigned char* ucRspData, // [in] response data
int iRspLen, /I Tin] length of response data
char* clPAdr, /I Tin] ip address of the reader
int iPortNr); /I Tin] local port number which received the notification

FEIG ELECTRONIC GmbH Page 27 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

/I only for MAX notification task

void (*cbFct3)(void* pAny, [/ [in] pointer to anything (from struct _FEISC_TASK_INIT)
int iReaderHnd, // [in] reader handle of FEISC
int iTaskID, /I [in] task identifier from FEISC_StartAsyncTask(..)
int iError, /I [in] OK (=0), error code (<0) or status byte from reader (>0)
unsigned char ucCmd, /I [in] reader command
unsigned char* ucRspData, // [in] response data
int iRspLen, /I Tin] length of response data
char* clPAdr, [Tin] ip address of the reader
int iPortNr, /1 Tin] local port number which received the notification
unsigned char& ucAction); // [out] action set by host application
}IMethod®;
union
{
int iNotifyWithAck; /1 0: notification without acknowledge
/1 1: notification with acknowledge
}nData*

} FEISC_TASK_INIT;

The core element of the structure is the union (method), which contains one or more function
pointers. Selection of the callback function is handled by the parameter uiFlag. The parameter
pAny can be used for any data and is returned in the first parameter of the callback function. C++
programmers can thus have a pointer for the invoking object sent to the static declared callback
function and in this way access class functions. uiTimeout defines the timeout for an inventory
cycle or the maximal time for receiving a notification protocol. The value depends on the
specifications in the system manual for the reader for the protocol [0xB0][0x01] Inventory or in
seconds for notification timeout.

The structure variables cClientIP and iPortAdr are intended only for the Notification task. When
using the TCP/IP channel for the inventory task the socket must already be opened before starting
the asynchronous task.

Important Note: the structure FEISC_TASK_INIT must always be initialized on application-side
with 0 with a call of memset(myTaskinit, O, sizeof(FEISC_TASK_INIT));

®> Naming of the union with Method or InData is only for C-programmers. C++ programmers access the union
directly through the structure.

FEIG ELECTRONIC GmbH Page 28 (of 124) H9391-43e-1D-B.doc

OBID® Manual ID FEISC V7.02.00

5.5. Event flagging to applications6

Event handling mechanisms can be installed for some events. As soon as a send protocol for
example is output over the interface, you can also notify the application of the event asynchronous
to the program sequence. The application must already contain a corresponding function for this
(s. 5.7.10. FEISC_AddEventHandler). These event handling mechanism must not mistake with the
handling of events, triggered by starting of asynchronous tasks.

An event handling mechanism must be installed using the FEISC_AddEventHandler function.
You may choose between five various flagging methods: Message to a calling process, message
to a window use one of two possible callback function, or flagging with a Windows-API event.

An already installed event handling mechanism must be deleted using the
FEISC_DelEventHandler function.

The structure FEISC_EVENT _INIT contains the parameters required for flagging:

typedef struct _FEISC_EVENT_INIT
{
void* pAny; /I pointer to anything, which is reflected as the first parameter
I/ in the 4" callback function (e.g. can be used to pass the object pointer)
UINT uiUse; /I Defines the event (e.g. FEISC_PRT_EVENT)
UINT uiMsg; // Message Code for dwThreadlD and hwndWnd (e.g. WM_USER_xyz)
UINT uiFlag; // Specifies use of the union (e.g. FEISC_WND_HWND)

union
{
DWORD dwThreadID; Il for Thread-1D
HWND hwndwWnd,; /I for Window-Handle
void (*cbFct)(int, int); /I for first Callback-Function
void (*cbFct2)(BSTR, int, int); // for second Callback-Function
void (*cbFct4)(void*, const char*, int); // for 4™ callback-Function (3" callback not public)
HANDLE hEvent; /I for Event-Handle
}Method’;

} FEISC_EVENT_INIT;

The core element of the structure is the union, which contains either the ID of a process, the
handle of a window, a function pointer or the handle of an Windows-API event. The uiFlag
parameter is used to select the flag form. You use the uiUse parameter to store a designator for
the event for assigning the handling method. To use the message methods you must store the
message code in uiMsg.

You may install more than one handling mechanism for a single event. However, each
dwThreadlD, hwndWnd, cbFct, cbFct2, cbFct4 or hEvent can be used only once per event.

® Can be used only with limitations for Linux C/C++ projects
" Naming of the union with method is only for C-programmers. C++ programmers access the union directly
through the structure.

FEIG ELECTRONIC GmbH Page 29 (of 124) H9391-43e-1D-B.doc

OBID® Manual ID FEISC V7.02.00

5.6. Secured data transmission with encryption

5.6.1. Overview

Some OBID i-scan®- and OBID® classic-pro Reader can secure the data transmission over
Ethernet (TCP/IP) with an 256 bit AES algorithm. The Authentication Key (Password) is stored in
the Reader and cannot read back. The crypto mode is disabled by default.

The encrypted data transmission is realized with functions of the Open-Source organisation
openSSL (http://www.openssl.org), which are part of the library file libeay32.dll (Windows) rsp.
libcrypto.so (Linux). The binding to the openSSL library file will be affected at runtime with the first
call of an openSSL function. This has the advantage that all applications are freed from the
installation of the openSSL library file if no encrypted data transmission is used. In the case that
encrypted data transmission is used the license issues of openSSL have to be considered.

The encrypted data transmission will be enabled by activating the crypto mode in the Reader
configuration with a following CPU-Reset. After that, the Reader accepts only enciphered
protocols. To get access rights in crypto mode, the first command must be an authentication
command (FEISC_OxAE_ReaderAuthent), transporting the enciphered password (password
contains only nulls by default), to open a new session. Every successive protocol will then
enciphered automatically.

Note: After the first authentication a new password should be saved in the Reader and a new
authentication with the new password should be executed. This procedure — to switch into the
cryto mode first and to change the password secondly — ensures that the new password will be
transmitted enciphered! Otherwise the new password will be transmitted plain.

5.6.2. Feedback of error cases

A Reader with activated crypto mode ignores all plain protocols and returns the status 0x19
(Crypto Processing Error).

A Reader in plain mode ignores all enciphered protocols and returns the status 0x82 (Command
not available).

An authentication into the Reader with a false password will be returned with status 0x12 (Authent
Error).

A Reader with activated crypto mode signals with status 0x19 (Crypto Processing Error) an error
case in the enciphered transmission. The Host must execute an authentication into the Reader
again.

The error codes -4093 and -4094 returned by FEISC_O0x.. functions signals a Host-side error case
in the enciphered transmission. The Host must execute an authentication into the Reader again

The error code -4090 signals an error while loading the openSSL library file. Probably the library
file is not installed or an incompatible version is installed.

FEIG ELECTRONIC GmbH Page 30 (of 124) H9391-43e-1D-B.doc

http://www.openssl.org/

OBID® Manual ID FEISC V7.02.00

5.6.3. Notes for Programmers

Adding enciphered data transmission into a project needs only few aspects to be considered:

1. Every communication function FEISC_Ox... is prepared for plain and enciphered data
transmission.

2. It is a requirement to link each OBID i-scan®- or OBID® classsic-pro Reader with one
Reader object exclusively, because every Reader object manages the individual session
data.

3. After executing a connection with FETCP_Connect an authentication into the Reader is
required.

4. If the Host application receives after a plain or enciphered data transmission the status
0x19 an authentication into the Reader is required.

5. If the error codes -4093 or -4094 occures in the Host application an authentication into the
Reader is required.

6. In the Notification- and Access-Mode the data transmission is enciphered if the crypto
mode is enabled in the Reader. Thus, the password must be added to the structure
FEISC_TASK_INIT.

7. If the crypto mode is disabled in the Reader configuration by a configuration protocol, the
Reader object changes automatically back into the plain mode with the next plain protocol.
This has the advantage that the existing Reader object can be maintained. A new
connection is also not necessary.

FEIG ELECTRONIC GmbH Page 31 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

5.7. List of functions

The support package contains a large number of functions for various tasks. They are divided into
groups for better orientation. Please note that most of the functions can be used only in
conjunction (direct or indirect) with the ID FECOM or FETCP or ID FEUSB support package.

Administration functions for Reader Objects

e int FEISC_NewReader(intiPortHnd)

e int FEISC_DeleteReader(int iReaderHnd)

e int FEISC_GetReaderList(int iNext)

e int FEISC_GetReaderPara(int iReaderHnd, char* cPara, char* cValue)

e int FEISC_SetReaderPara(int iReaderHnd, char* cPara, char* cValue)

e void FEISC_GetDLLVersion(char* cVersion)

e int FEISC_GetErrorText(int iErrorCode, char* cErrorText)

e int FEISC_GetStatusText(UCHAR ucStatus, char* cStatusText)

e int FEISC_AddEventHandler(intiReaderHnd, FEISC_EVENT_INIT* plnit)
e int FEISC_DelEventHandler(int iReaderHnd, FEISC_EVENT_INIT* plnit)

Functions for Plug-in objects to connect alternative port types

e int FEISC_PI_Get(const char* cLibName, void** pPlugin)

int FEISC_PI_Install(int iReaderHnd, void* pPlugin)

e int FEISC_PI_Remove(int iReaderHnd)

e int FEISC_PI_OpenPort(int iReaderHnd, char* cPortDefinition)

e int FEISC_PI_ClosePort(int iReaderHnd)

e int FEISC_PI_GetPortPara(int iReaderHnd, char* cPara, char* cValue)

e int FEISC_PI_SetPortPara(int iReaderHnd, char* cPara, char* cValue)

e int FEISC_PI_GetDLLVersion(int iReaderHnd, char* cVersion)

e int FEISC_PI_GetErrorText(int iReaderHnd, int iErrorCode, char* cErrorText)

Protocol functions

e int FEISC_BuildSendProtocol(int iReaderHnd, UCHAR cBusAdr, UCHAR cCmdByte, UCHAR* cSendData, int
iDataLen, UCHAR* cSendProt, int iDataFormat)

e int FEISC_BuildRecProtocol(int iReaderHnd, UCHAR cBusAdr, UCHAR cCmdByte, UCHAR cStatus, UCHAR*
cRecData, int iDataLen, UCHAR* cRecProt, int iDataFormat)

e int FEISC_SplitSendProtocol(int iReaderHnd, UCHAR* cSendProt, int iSendLen, UCHAR* cBusAdr, UCHAR*
cCmdByte, UCHAR* cSendData, int* iDatalLen, int iDataFormat)

e int FEISC_SplitRecProtocol(int iReaderHnd, UCHAR* cRecProt, int iRecLen, UCHAR* cBusAdr, UCHAR*
cCmdByte, UCHAR* cRecData, int* iDatalLen, int iDataFormat)

Query functions

e int FEISC_GetLastSendProt(int iReaderHnd, UCHAR* cSendProt, int iDataFormat)
e int FEISC_GetLastRecProt(int iReaderHnd, UCHAR* cRecProt, int iDataFormat)

e int FEISC_GetLastState(int iReaderHnd, char* cStatusText)

e int FEISC_GetLastRecProtLen(int iReaderHnd)

FEIG ELECTRONIC GmbH Page 32 (of 124) H9391-43e-1D-B.doc

OBID® Manual ID FEISC V7.02.00

e int FEISC_GetLastError(int iReaderHnd , int* iErrorCode, char* cErrorText)

General communication functions
e int FEISC_SendTransparent(int iReaderHnd, UCHAR* cSendProt, int iSendLen, UCHAR* cRecProt, int iRecLen,

int iCheckSum, int iDataFormat)
e int FEISC_Transmit(int iReaderHnd, UCHAR* cSendProt, int iSendLen, int iCheckSum, int iDataFormat)
e int FEISC_Receive(int iReaderHnd, UCHAR* cRecProt, int iRecLen, int iCheckSum, iDataFormat)

FEIG ELECTRONIC GmbH Page 33 (of 124) H9391-43e-1D-B.doc

OBID® Manual ID FEISC V7.02.00

Special communication functions

int FEISC_0x18_Destroy(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode, UCHAR* cEPC, UCHAR* cPW)

int FEISC_Ox1A_Halt(int iReaderHnd, UCHAR cBusAdr)

int FEISC_Ox1B_ResetQuietBit(int iReaderHnd, UCHAR cBusAdr)

int FEISC_0x1C_EASRequest(int iReaderHnd, UCHAR cBusAdr)

int FEISC_0x21_ReadBuffer(int iReaderHnd, UCHAR cBusAdr, UCHAR cSets, UCHAR* cTrData, UCHAR*
cRecSets, UCHAR* cRecDataSets, int iDataFormat)

int FEISC_0x22_ReadBuffer(int iReaderHnd, UCHAR cBusAdr, int iSets, UCHAR* cTrData, UCHAR* cRecSets,
int* iRecDataSets, int iDataFormat)

int FEISC_0Ox31_ReadDataBufferinfo(int iReaderHnd, UCHAR cBusAdr, UCHAR* cTabSize, UCHAR* cTabStart,
UCHAR* cTabLen, int iDataFormat)

int FEISC_0x32_ClearDataBuffer(int iReaderHnd, UCHAR cBusAdr)

int FEISC_0x33_InitBuffer(int iReaderHnd, UCHAR cBusAdr)

int FEISC_0x34_ForceNotifyTrigger(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode)

int FEISC_0x52_GetBaud(int iReaderHnd, UCHAR cBusAdr)

int FEISC_0x55_StartFlashLoader(int iReaderHnd)

int FEISC_0x55_StartFlashLoaderEx(int iReaderHnd, UCHAR cBusAdr)

int FEISC_0x63_CPUReset(int iReaderHnd, UCHAR cBusAdr)

int FEISC_0x65_SoftVersion(int iReaderHnd, UCHAR cBusAdr, UCHAR* cVersion, int iDataFormat)

int FEISC_Ox66_ReaderIinfo(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode, UCHAR* cVersion, int
iDataFormat)

int FEISC_0x69_RFReset(int iReaderHnd, UCHAR cBusAdr)

int FEISC_O0x6A_RFONOff(int iReaderHnd, UCHAR cBusAdr, UCHAR cRF)

int FEISC_0x6B_CentralizedRFSync(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode, UCHAR cTxChannel, int
iTxPeriod, UCHAR cRes1, UCHAR cRes2)

int FEISC_0x6C_SetNoiseLevel(int iReaderHnd, UCHAR cBusAdr, UCHAR* cLevel, int iDataFormat)

int FEISC_0x6D_GetNoiseLevel(int iReaderHnd, UCHAR cBusAdr, UCHAR* cLevel, int iDataFormat)

int FEISC_Ox6E_RdDiag(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode, UCHAR* cData)

int FEISC_0x6F_AntennaTuning(int iReaderHnd, UCHAR cBusAdr)

int FEISC_0x71_SetOutput(int iReaderHnd, UCHAR cBusAdr, int iOS, int iOSF, int iOSTime, int iOutTime)

int FEISC_0x72_SetOutput(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode, UCHAR cOutN, UCHAR*
pRecords)

int FEISC_0x74_ReadInput(int iReaderHnd, UCHAR cBusAdr, UCHAR* cinput)

int FEISC_0x75_AdjAntenna(int iReaderHnd, UCHAR cBusAdr, UCHAR* cLevel, int iDataFormat)

int FEISC_0x80_ReadConfBlock(int iReaderHnd, UCHAR cBusAdr, UCHAR cConfAdr, UCHAR* cConfBlock, int
iDataFormat)

int FEISC_0x81_WriteConfBlock(int iReaderHnd, UCHAR cBusAdr, UCHAR cConfAdr, UCHAR* cConfBlock, int
iDataFormat)

int FEISC_0x82_SaveConfBlock(int iReaderHnd, UCHAR cBusAdr, UCHAR cConfAdr)

int FEISC_0x83_ResetConfBlock(int iReaderHnd, UCHAR cBusAdr, UCHAR cConfAdr)

int FEISC_0x85_SetSysTimer(int iReaderHnd, UCHAR cBusAdr, UCHAR* cTime, int iDataFormat)

int FEISC_0x86_GetSysTimer(int iReaderHnd, UCHAR cBusAdr, UCHAR* cTime, int iDataFormat)

int FEISC_0x87_SetSystemDate(int iReaderHnd, UCHAR cBusAdr, UCHAR cCentury, UCHAR cYear, UCHAR
cMonth, UCHAR cDay, UCHAR cTimezone, UCHAR cHour, UCHAR cMinute, int iMilliSecond)

FEIG ELECTRONIC GmbH Page 34 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

e int FEISC_0x88_GetSystemDate(int iReaderHnd, UCHAR cBusAdr, UCHAR* cCentury, UCHAR* cYear, UCHAR*
cMonth, UCHAR* cDay, UCHAR* cTimezone, UCHAR* cHour, UCHAR* cMinute, int* iMilliSecond)

e int FEISC_O0Ox8A_ReadConfiguration(int iReaderHnd, UCHAR cBusAdr, UCHAR cDevice, UCHAR cBank, UCHAR
cMode, int iReqBlockAdr, UCHAR cReqgBlockCount, UCHAR* cRspBlockCount, UCHAR* cRspBlockSize, UCHAR*
cReqData)

e int FEISC_0x8B_WriteConfiguration(int iReaderHnd, UCHAR cBusAdr, UCHAR cDevice, UCHAR cBank, UCHAR
cMode, UCHAR cRegBlockCount, UCHAR cReqBlockSize, UCHAR* cRegData)

e int FEISC_Ox8C_ResetConfiguration(int iReaderHnd, UCHAR cBusAdr, UCHAR cDevice, UCHAR cBank,
UCHAR cMode, int iRegBlockAdr, UCHAR cReqBlockCount)

e int FEISC_O0x9F_Piggyback_Command(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode, UCHAR cDevice,
UCHAR cPort, UCHAR* cRegPrt, int iRegLen, UCHAR* cRspPrt, int* iRspLen)

e int FEISC_O0xAO_RdLogin(int iReaderHnd, UCHAR cBusAdr, UCHAR* cRd_PW, int iDataFormat)

e int FEISC_O0xA2_WriteMifareKeys(int iReaderHnd, UCHAR cBusAdr, UCHAR cType, UCHAR cAdr, UCHAR*
cKey, int iDataFormat)

e int FEISC_OxA3_Write_DES_AES Keys(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode, UCHAR
cReaderKeylndex, UCHAR cAuthentMode, UCHAR cKeyLen, UCHAR* cKey, int iDataFormat)

e int FEISC_OxAD_WriteReaderAuthentKey(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode, UCHAR cKeyType,
UCHAR cKeyLen, UCHAR* cKey, int iDataFormat)

e int FEISC_OxAE_ReaderAuthent(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode, UCHAR cKeyType, UCHAR
cKeyLen, UCHAR* cKey, int iDataFormat)

e int FEISC_0xBO_ISOCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR* cRegData, int iRegLen, UCHAR* cRspData,
int* iRspLen, int iDataFormat)

e int FEISC_0xB1_ISOCustAndPropCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR cMfr, UCHAR* cReqgData, int
iReqgLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

e int FEISC_0xB2_ISOCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR* cRegData, int iRegLen, UCHAR* cRspData,
int* iRspLen, int iDataFormat)

e int FEISC_OxB3 EPCCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR* cRegData, int iReqLen, UCHAR*
cRspData, int* iRspLen, int iDataFormat)

e int FEISC_OxB4 EPC_UHF_Cmd(int iReaderHnd, UCHAR cBusAdr, UCHAR cMfr, UCHAR* cRegData, int
iRegLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

e int FEISC_OxBB_C1G2_TranspCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR ucMode, UCHAR ucTxPara,
UCHAR ucRxPara, unsigned int uiTs, int iRspLength, UCHAR* cReqgData, int iReqLen, UCHAR* cRspData, int*
iRspLen)

e int FEISC_0xBC_CmdQueue(int iReaderHnd, int iMode, int iCmdCount, UCHAR* cCmdQueue, int iCmdQueuelen,
FEISC_TASK_INIT* plnit)

e int FEISC_OxBD_ISOTranspCmd(int iReaderHnd, UCHAR cBusAdr, int iMode, int iRspLength, UCHAR*
cReqgData, int iReqLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

e int FEISC_OxBE_ISOTranspCmd(int iReaderHnd, UCHAR cBusAdr, int iMode, int iRspLength, UCHAR*
cReqgData, int iReqLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

e int FEISC_O0xBF_ISOTranspCmd(int iReaderHnd, UCHAR cBusAdr, int iMode, int iRspLength, UCHAR* cRegData,
int iRegLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

e int FEISC_0xCO_SAMCmd(int iReaderHnd, int iSlot, UCHAR* cReqgData, int iRegLen, FEISC_TASK_INIT* plnit)

e int FEISC_0xCO_SAMCmd_Sync(int iReaderHnd, UCHAR cBusAdr, int iSlot, int iTimeout, UCHAR* cReqgData, int
iReqLen, UCHAR* cRspData, int* iRspLen)

FEIG ELECTRONIC GmbH Page 35 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

e int FEISC_0xC1_DESFireCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR cSubCmd, UCHAR cMode, UCHAR*
cAppID, UCHAR cReaderKeyindex, UCHAR* cReqgData, int iRegLen, UCHAR* cRspData, int* iRspLen, int
iDataFormat)

e int FEISC_0xC2_MifarePlusCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR cSubCmd, UCHAR cMode, UCHAR*
cReqData, int iReqLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

e int FEISC_0xC3_DESFireCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR cSubCmd, UCHAR cMode, UCHAR*
cReqData, int iReqLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

Special functions for asynchronous tasks

e int FEISC_StartAsyncTask(int iReaderHnd, int iTaskID, FEISC_TASK_INIT* plnit, void* plnput)
e int FEISC_CancelAsyncTask(int iReaderHnd)

e int FEISC_TriggerAsyncTask(int iReaderHnd)

FEIG ELECTRONIC GmbH Page 36 (of 124) H9391-43e-1D-B.doc

OBID® Manual ID FEISC V7.02.00

5.7.1. Which function for which OBID i-scan® and OBID® classic-pro Reader

For OBID classic-pro Reader please have a look to the system manuals which contains a reader
command matrix.

Function ISC.M01 | ISC.M02 | ISC.PR [ISC.PRH [ISC.LR [ISC.MRU | ISC.LRU CPR
ISC.MR

FEISC_0x18_Destroy X X X X
FEISC_Ox1A_Halt X X
FEISC_0x1B_ResetQuietBit X X X
FEISC_0x1C_EASRequest X X X
FEISC_Ox1F_MAXDataExchange X
FEISC_0x21_ReadBuffer X
FEISC_0x22_ReadBuffer X X
FEISC_0x31_ReadDataBufferinfo X X X
FEISC_0x32_ClearDataBuffer X X X
FEISC_0x33_|nitBuffer X X X
FEISC_0x34_ForceNotifyTrigger X X
FEISC_0x52_GetBaud X X X X X X X X
FEISC_0x55_StartFlashLoader X X X X X X
FEISC_0x55_StartFlashLoaderEx X X X X X X X
FEISC_0x63_CPUReset X X X X X X X X
FEISC_0x64_SystemReset X X
FEISC_0x65_SoftVersion X X X X X X X
FEISC_0x66_ReaderInfo X X
FEISC_0x69_RFReset X X X X X X X X
FEISC_O0x6A_RFONOff X X X X X X X X
FEISC_0x6B_CentralizedRFSync X X
FEISC_0x6C_SetNoiseLevel X X
FEISC_0x6D_GetNoiseLevel X X
FEISC_Ox6E_RdDiag X X X
FEISC_Ox6F_AntennaTuning X
FEISC_0x71_SetOutput X X X X X X X X
FEISC_0x72_SetOutput X X
FEISC_0x74_Readlnput X X X X X X
FEISC_0x75_AdjAntenna X
FEISC_0x76_CheckAntennas X
FEISC_0x80_ReadConfBlock X X X X X X X X
FEISC_0x81_WriteConfBlock X X X X X X X X
FEISC_0x82_SaveConfBlock X X X X X X X X
FEISC_0x83_ResetConfBlock X X X X X X X X
FEISC_0x85_SetSysTimer X

FEIG ELECTRONIC GmbH Page 37 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00
Function ISC.M01 | ISC.M02 | ISC.PR | ISC.PRH [ISC.LR [ISC.MRU | ISC.LRU CPR
ISC.MR
FEISC_0x86_GetSysTimer X
FEISC_0x87_SetSystemDate X
FEISC_0x88_GetSystemDate X
FEISC_O0x9F_Piggyback_Command X
FEISC_OXAO_RdLogin X X
FEISC_OxA2_WriteMifareKeys X
FEISC_OxA3_Write_DES_AES_Keys X
FEISC_0xB0_ISOCmd X X X X X X X X
FEISC_0xB1_ISOCustAndPropCmd X
FEISC_0xB2_ISOCmd X X X X X
FEISC_0xB3_EPCCmd X X
FEISC_0xB4_EPC_UHF_Cmd X X
FEISC_0xBB_C1G2_TranspCmd X X
FEISC_0xBC_CmdQueue X
FEISC_0xBD_ISOTranspCmd X
FEISC_OxXBE_ISOTranspCmd X
FEISC_OxBF_ISOTranspCmd X X X X X
FEISC_0xCO_SAMCmd X
FEISC_0xCO_SAMCmd_Sync
FEISC_0xC1_DESFireCmd X
FEISC_0xC3_DESFireCmd
FEISC_0xC2_MifarePlusCmd X

FEIG ELECTRONIC GmbH

Page 38 (of 124)

H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.2. FEISC_NewReader

Function Creates a Reader object.
Syntax int FEISC_NewReader(int iPortHnd)
Description A Reader object is created. Protocol functions require a Reader object in order to run.

iPortHnd® is the handle of a port object created from FECOM using the
FECOM_OpenPort function or a device object using the FEUSB_OpenDevice function
or a TCP/IP socket object using the FETCP_Connect function. This handle allows
protocols to be directly passed on to FECOM or FETCP or FEUSB. Transfer of a 0 is
also permitted. If the communication with an own port driver is necessary, the constant
FEISC_PLUGIN must be transmitted and this port driver must previously be installed
with the call of FEISC_InstallPlugin.

Multiple Reader objects can in principle carry out their communication over the same
serial COM port, the same TCP/IP socket or the same USB channel. In the case of
secured data transmission the exclusive link of one Reader to one Reader objects is
required.

iPortHnd uses the first byte (MSB) of the PortHandle to distinguish between protocol
output to FECOM or FEUSB:

iPortHnd = OXOXXXXXXX? indicates output to FECOM.DLL/SO
iPortHnd = OXIXXXXXXX indicates output to FEUSB.DLL/SO
iPortHnd = Ox2XXXXXXX indicates output to FETCP.DLL/SO

You may change the value of the PortHandle stored in the Reader object after the fact
using the FEISC_SetReaderPara function.

A Reader object created with FEISC_NewReader must (!) be deleted from memory
using the FEISC_DeleteReader function. Otherwise the memory reserved by the library
is not freed up again.

Return value

If a Reader object was created without error, a handle (>0) is returned. In case of error,
the function returns a value less than zero.

A list of error codes can be found in the Appendix.

Example

#include "feisc.h"
#include "fecom.h"

char cPortNr[4];
itoa(1, cPortNr, 10); /I Convert Integer to Char
int iPortHnd = FECOM_OpenPort(cPortNr); /I COM:1 should be opened

if(iPortHnd <0)

/I code here in case of error

% iPortHnd is used in this document throughout to mean iDevHnd or iSocketHnd as well
° X represents any hex value

FEIG ELECTRONIC GmbH Page 39 (of 124) H9391-43e-1D-B.doc

OBID® Manual ID FEISC V7.02.00

}

else
{ // Open Reader object

int iReaderHnd = FEISC_NewReader(iPortHnd);
}

FEIG ELECTRONIC GmbH Page 40 (of 124) H9391-43e-ID-B.doc

OBID®

Manual

ID FEISC V7.02.00

5.7.3. FEISC_DeleteReader

Function Deletes a Reader object
Syntax int FEISC_DeleteReader(int iReaderHnd)
Description The function deletes the Reader object indicated by the parameter iReaderHnd and

frees up the reserved memory.

Return value

The return value is O if the action was successful. In case of error, the function returns a

value less than zero.

A list of error codes can be found in the Appendix.

Example

#include "feisc.h”

intiErr;

int iReaderHnd = FEISC_NewReader(0);

if(iReaderHnd <0)
{

/I code here in case of error

}

if(iReaderHnd > 0)

{ IiErr =FEISC_DeleteReader(iReaderHnd);

,

FEIG ELECTRONIC GmbH

Page 41 (of 124)

H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.4. FEISC_GetReaderList

Function Depending on the iNext parameter, gets the first or following Reader handle from the
internal list of the generated Reader objects.

Syntax int FEISC_GetReaderList(int iNext)

Description The function returns a Reader handle from the internal list of Reader handles. If one

transmits a O for iNext, the first entry in the list is returned. If you transmit a Reader
handle contained in the list with iNext, the function gets and returns the entry following
the Reader handle. In this way you can keep incrementing the return value to go through
the list and call out all the entries.

Return value

When an entry is found, the Reader handle is provided with the return value. When the
end of the internal list is reached, in other words the transferred Reader handle has no
following entry, a 0 is returned. If there is no Reader object, FEISC_ERR_EMPTY_LIST
is returned.

In case of error, the function returns a value less than zero.

A list of error codes can be found in the Appendix.

Sl #include "feisc.h"
/I Example function for creating a list of Reader objects
void ReaderList(void)
{ intiNextHnd = FEISC_GetReaderList(0); // get the first handle
while(iNextHnd > 0)
{ /I here for example code for collecting the handles and reading out parameters
iNextHnd = FEISC_GetReaderList(iNextHnd); // get next handle
}
/I here for example code for displaying a list
}
Tip When closing all open created Reader objects it is convenient to use a loop such as in

the example above. Bear in mind however than you cannot get the next in line from a
deleted Reader object. The following code fragment gives you an idea of how to delete
all created Reader objects in a loop:

int iNextHnd, iCloseHnd, iError;
iNextHnd = FEISC_GetReaderList(0); // get first handle
while(iNextHnd >0)
{ iCloseHnd = iNextHnd,;
iNextHnd = FEISC_GetReaderList(iNextHnd); // get next handle
iError = FEISC_DeleteReader(iCloseHnd); /[only now delete Reader object

FEIG ELECTRONIC GmbH Page 42 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.5. FEISC_GetDLLVersion

Function Gets the DLL/SO version number.
Syntax void FEISC_GetDLLVersion(char* cVersion)
Description The function returns the version number of the DLL/SO.

cVersion is an empty, null-terminated string for returning the version number. The string
should be able to hold at least 256 characters.

The string is filled with the current version number (e.g. “07.01.06"). Newer versions may
provide additional information.

Return value

none

Example

#include "feisc.h"

char cVersion[256];
FEISC_GetDLLVersion(cVersion);
/I code here for displaying the version number

5.7.6. FEISC_GetErrorText

Function Gets error text for error code
Syntax int FEISC_GetErrorText(int iErrorCode, char* cErrorText)
Description This function uses cErrorText to send a short error text associated with the iErrorCode.

The buffer for cErrorText should be able to hold at least 256 characters.

Return value

If there is no error the function returns zero, and if error a value less than zero. The list
of error codes can be found in the Appendix.

Example

"#;finclude "feisc.h"
char cErrorText[256];

int iBack = FEISC_GetErrorText(FEISC_ERR_PROTLEN, cErrorText)
/I code here for displaying the text

FEIG ELECTRONIC GmbH Page 43 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.7. FEISC_GetStatusText

Function Gets a short text for status byte
Syntax int FEISC_GetStatusText(UCHAR ucStatus, char* cStatusText)
Description This function uses cStatusText to send a short text associated with the ucStatus.

The buffer for cStatusText should be able to hold at least 128 characters.

Return value

If there is no error the function returns zero, and if error a value less than zero. The list
of error codes can be found in the Appendix.

Example

"#;finclude "feisc.h”
char cStatusText[128];

int iBack = FEISC_GetStatusText(0x01, cStatusText)
/I code here for displaying the text

FEIG ELECTRONIC GmbH Page 44 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.8. FEISC_GetReaderPara

Function Gets a parameter from a Reader object
Syntax int FEISC_GetReaderPara(int iReaderHnd, char* cPara, char* cValue)
Description The function gets the current value of a parameter.
cPara is a null-terminated string with the variable.
cValue is an empty, null-terminated string for returning the parameter value. The string
should be able to hold at least 128 characters.
iReaderHnd is the handle for the Reader object.
Variables The variables are: PortHnd", LogProt, LogFile, LogFilename, RecBusAdr, Language,

ChkRecBusAdr, ConvHexToString, SendStr, RecStr, IsProtToAppLocked and
FrameSupport

Cross-reference

For more information see: 5.7.9. FEISC SetReaderPara and 6.2. List of variables

Return value

If no error the function returns a value of 0, and in case of error a value less than zero.

A list of error codes can be found in the Appendix.

Example

#include "feisc.h"

char cValue[128];

int iPortHnd;

if(IFEISC_GetReaderPara(handle, "PortHnd", cValue))
/I Convert Char to Integer

iPortHnd = atoi(cValue);
/I here for example code for using the PortHandle

1% Note here the remarks concerning the PortHandle in 5.7.2. FEISC NewReader

FEIG ELECTRONIC GmbH Page 45 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.9. FEISC_SetReaderPara

Function Sets a Reader object parameter to a new value.
Syntax int FEISC_SetReaderPara(int iReaderHnd, char* cPara, char* cValue)
Description The function gives a new parameter to a Reader object. The Reader object stores the
new value and immediately turns it into the current parameter.
cPara is a null-terminated string with the variable.
cValue is a null-terminated string with the new parameter value.
iReaderHnd is the handle for the Reader object.
Variables The variables are: PortHnd', LogProt, LogFile, LogFilename, Language,

ChkRecBusAdr, ConvHexToString, LockProtToApp, UnlockProtToApp and
FrameSupport

Cross-reference

For more information see: 5.7.8. FEISC GetReaderPara and 6.2. List of variables

Return value

If the Reader object with the new parameter value was successfully (error-free) installed,
a 0 is returned. In case of error, the function returns a value less than zero.

A list of error codes can be found in the Appendix.

Example

/I the example shows that a new PortHandle can be assigned to a Reader object after the fact.
/I after this assignment, communication is through the new port .

#include "feisc.h"
#include "fecom.h"

intiErr;

char cPortHnd[9];

char cPortNr[4];

itoa(1, cPortNr, 10); /I Convert Integer to Char

int iPortHnd = FECOM_OpenPort(cPortNr); /I COM:1 should be opened

if(iPortHnd > 0)

{ itoa(iPortHnd, cPortHnd, 10); // Convert Integer to Char
iErr = FEISC_SetReaderPara(iReaderHnd, "PortHnd", cPortHnd);
[l from here on communication through the new port is possible

' Note here the remarks concerning the PortHandle in 5.7.2. FEISC NewReader

FEIG ELECTRONIC GmbH Page 46 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.10. FEISC_AddEventHandler

Function Installs an event handling mechanism
Syntax int FEISC_AddEventHandler(int iReaderHnd, FEISC_EVENT _INIT* plnit)
Description The function installs one of four possible event handling methods. This method is used

when an event occurs for which the method was installed. This allows asynchronous
response to events in an application program.

The event handling method is established only for the port identified by iReaderHnd.
This means that if necessary you may have to repeat this installation for each Reader
object.

Event Description

FEISC_PRT_EVENT One event each for the send and receive protocol *?

FEISC_SNDPRT_EVENT Event for send protocol *°

FEISC_RECPRT_EVENT Event for receive protocol *°

FEISC_SCANNER_EVENT Event for received protocol when reader in scan mode™
(no support in Linux)

1% Method: Message to thread (not for Linux, Mac OS X)
This method is used for exchanging messages between threads '*. The thread uses the
Windows-API function GetCurrentThreadID() to get the thread identifier and transfers
this as the parameter dwThreadID in the FEISC_EVEN_INIT structure.
The thread must provide a message handling function for receiving the message that
was sent by FEISC with the Windows-API function PostThreadMessage(..). The
message code is freely selectable.
The FEISC_EVENT _INIT structure is filled as follows:

uiFlag = FEISC_THREAD_ID

uilUse = FEISC_xyz_EVENT /I see Defines FEISC.H

uiMsg = WM_USER + ... I/ freely selectable, but higher than WM_USER **

dwThreadlD = GetCurrentThreadlD()
The MessageMap function in the application is given in the 1% parameter (WPARAM)
the pointer to the string and in the 2" parameter the status byte of the receive protocol.
Note that the string pointer is cast with int, so that it needs to be converted back using
the cast operator (LPCTSTR) when allocating to a CString data type or (char*) when
allocating to a C-String.

g”—d Method: Message to window (not for Linux, Mac OS X)
This method is used when the message needs to be sent directly to a window. The
corresponding window uses the Windows-API function GetWindow (.)™ to get the

'2 Event is only generated if the parameter LogProt is set to 1 (default: 0)

'3 See description to parameter ConvHexToString in: 6.2. List of variables

4 Parallel execution path independent of the application program. The application program itself is a thread.
'*> See Windows documentation for the SDK platform

'® When using MFC CWnd you can also use the GetSafeHwnd() method

FEIG ELECTRONIC GmbH Page 47 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

handle and transfer it as the parameter hwndWnd in the FEISC_EVENT _INIT structure.
The window must provide a message handling function for receiving the message that
was sent by FEISC with the Windows-API function PostMessage(..). The message code
is freely selectable.
The FEISC_EVENT _INITstructure is filled as follows:

uiFlag = FEISC_WND_HWND

uiUse = FEISC_xyz_EVENT /I see Defines FEISC.H

uiMsg = WM_USER + ... I/ freely selectable, but higher than WM_USER ¥/

hwndwWnd = GetWindow(...)
The MessageMap function gets the same parameters as in the first method.

§m method: Invoking the first callback function (not for Mac OS X)
The first callback method installs a function pointer for an event. When the event occurs,
FEISC calls the function. The contents of the function can be freely determined. The
transfer parameters are described above for the 1* method.
The FEISC_EVENT _INIT structure is filled as follows:

uiUse = FEISC_xyz_EVENT /I see Defines FEISC.H

uiMsg not needed

uiFlag = FEISC_CALLBACK

chFct = (void*)&YourFunctionName!®

ém method: Invoking the second callback function (not for Linux, Mac OS X)
The second callback method installs a function pointer for an event. When the event

occurs, FEISC calls the function. The contents of the function can be freely determined.
The transfer parameters are as follows:

BSTR - pointer to a Unicode string

int - number of characters in string

int - statusbyte or errorcode

The FEISC_EVENT _INIT structure is filled as follows:
uiUse = FEISC_xyz_EVENT /I see Defines FEISC.H
uiMsg not needed
uiFlag = FEISC_CALLBACK_2
chFct2 = (void*)&YourFunctionName®®

§m method: Invoking the fourth callback function
The fourth callback method (third is not public) installs a function pointer for an event.
When the event occurs, FEISC calls the function. The contents of the function can be
freely determined. The transfer parameters are as follows:
The FEISC_EVENT _INIT structure is filled as follows:

uiUse = FEISC_xyz_EVENT /I see Defines FEISC.H

uiMsg not needed

uiFlag = FEISC_CALLBACK_4

pAny = this // pointer to anything, which is reflected as the first parameter

/'in the callback function (e.g. can be used to pass the object pointer)
chFct4 = (void*)&YourFunctionName®

7 See Windows documentation for the SDK platform

'® The function has the prototype: void YourFunctionName(int, int)

% The function has the prototype: void YourFunctionName(BSTR, int, int)

% The function has the prototype: void YourFunctionName(void*, const char*, int)

FEIG ELECTRONIC GmbH Page 48 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

gm method: Setting an event (not for Linux, Mac OS X)
With the event method an event handle is installed for an event. When an event occurs,
FEISC sets the event with the Windows-API function SetEvent(...). On the application
side you wait for the event with the Windows-API function WaitForSingleObject(...).
Since no parameters can be received, you must query the desired parameter with an
appropriate function. The set event must be reset again by the application program with
the Windows-API function ResetEvent(...).
The FEISC_EVENT _INIT structure is filled as follows:

uiUse = FEISC_xyz_EVENT /I see Defines FEISC.H

uiMsg not needed

uiFlag = FEISC_EVENT

hEvent = CreateEvent(..)

An installed event handling method can only be deleted using the function
FEISC_DelEventHandler.

When removing a Reader object, all event handling methods installed for that object are
lost.

Cross-reference

For more information see: 5.5. Event flagging to applications and 6.3. List of constants
for the FEISC _EVENT INIT structure

Return value

If no error the function returns zero, and in case of error a value less than zero. A list of
error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 49 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.11. FEISC_DelEventHandler

Function Deletes an event handling mechanism
Syntax int FEISC_DelEventHandler(int iReaderHnd, FEISC_EVENT _INIT* pInit)
Description The function deletes an event handling mechanism which was previously installed using

FEISC_AddEventHandler. The FEISC_EVENT_INIT structure is where you specify in
detail the event handling mechanism to be deleted.

Deleting the 1% method: Message to Thread (not for Linux, Mac OS X)
The FEISC_EVENT _INIT structure is filled as follows:

uiFlag = FEISC_THREAD_ID

uiUse = FEISC_xyz_EVENT /I see Defines in FEISC.H

uiMsg is not needed

dwThreadlD = GetCurrentThreadlD()

Deleting the 2™ method: Message to Window (not for Linux, Mac OS X)
The FEISC_EVENT _INIT structure is filled as follows:

uiFlag = FEISC_WND_HWND

uiUse = FEISC_xyz_EVENT /I see Defines in FEISC.H

uiMsg is not needed

hwndWnd = GetWindow(...)

Deleting the 3™ method: Invoking the first callback function (not for Mac OS X)
The FEISC_EVENT _INIT structure is filled as follows:

uiFlag = FEISC_CALLBACK

uilUse = FEISC_xyz_EVENT /I see Defines FEISC.H

uiMsg is not needed

cbFct2 = (void*)&YourFunctionName

Deleting the 4™ method: Invoking the second callback function (not for Linux, Mac OS X)
The FEISC_EVENT _INIT structure is filled as follows:

uiFlag = FEISC_CALLBACK_2

uiUse = FEISC_xyz_EVENT /I see Defines FEISC.H

uiMsg is not needed

cbFct4 = (void*)&YourFunctionName

Deleting the 5" method: Setting an event (not for Linux, Mac OS X)
The FEISC_EVENT _INIT structure is filled as follows:

uiFlag = FEISC_EVENT

uiUse = FEISC_xyz_EVENT /I see Defines FEISC.H

uiMsg is not needed

hEvent = hYourEventHandle

Cross-reference

For more information see:5.5. Event flagging to applications, 5.7.10.
FEISC AddEventHandler and 6.3. List of constants for the FEISC EVENT INIT
structure.

Return value

If no error the function returns zero, and in case of error a value less than zero. A list of
error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 50 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.12. FEISC_StartAsyncTask

Function An inventory or naotification task is started asynchronous to the application

Syntax int FEISC_StartAsyncTask(int iReaderHnd, int iTaskID, FEISC_TASK_INIT* plnit,
void* plnput)

Description This function starts an asynchronous task. An asynchronous task is an internal thread
which e.g. sends an inventory command to the reader and waits for the reply for a time
up to the timeout. Signaling of the reply data or the cancel condition to the application is
done by invoking a callback function.

The task behavior is specified in the parameter iTaskiD. Three tasks are currently
defined:
FEISC_TASKID_FIRST_NEW_TAG starts a one-time inventory task
FEISC _TASKID_EVERY_NEW_TAG starts a repeating inventory task
FEISC_TASKID_NOTIFICATION starts a task prepared for receiving
notifications
FEISC_TASKID_SAM_COMMAND starts a one-time task for receiving SAM
response
FEISC_TASKID_COMMAND_QUEUE starts a one-time task for receiving Queue
Command response
FEISC_TASKID_MAX_EVENT starts a task prepared for receiving Access
notifications
FEISC_TASKID_PEOPLE_COUNTER starts a task prepared for receiving
Counter notifications
All the data relevant to the callback function are contained in the structure
FEISC _TASK_INIT. This structure is described in greater detail in section 5.4.
Asynchronous tasks for relieving the load on applications.
Important Note: the structure FEISC_TASK_INIT must always be initialized on
application-side with 0 with a call of memset(myTasklnit, 0, sizeof(FEISC_TASK_INIT));
The last parameter plnput is not currently considered. You should always send NULL
(vbNull).
iReaderHnd is the handle for the reader object.
Cross- Additional information about asynchronous tasks can be found in the section 5.4.
references Asynchronous tasks for relieving the load on applications.
5.7.13. FEISC CancelAsyncTask
5.7.14. FEISC TriggerAsyncTask
Note Asynchronous inventory tasks use protocol [0xBO]J[0x01] Inventory with the NOTIFY

option in the mode byte. Readers not supporting this option can not be used for
asynchronous tasks.

FEIG ELECTRONIC GmbH Page 51 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

More detailed information about the protocol [0xB0][0x01] Inventory can be found in the
manual for the OBID i-scan® or OBID® classic-pro Reader family.

Return value In case of no error a O is returned. A value less than O indicates an error.

The list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 52 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.13. FEISC_CancelAsyncTask

Function Cancels an inventory or notification task.

Syntax int FEISC_CancelAsyncTask(int iReaderHnd)

Description This function cancels an asynchronous task.
You should not normally use one-time inventory (started with TasklD =
FEISC _TASKID_FIRST_NEW_TAG) to quit this function. You should end repeating
inventory (started with TaskID = FEISC _TASKID_EVERY_NEW_TAG) using this
function if the callback function was ended and the internal thread is waiting for the next
trigger. This ensures that the task in the Reader is ended and it can again process
reader tasks.
Notification tasks must always be canceled with this function.
The cancellation of the task is locked if the task execution is just inside the callback
function. This prevents deadlocks. In this case this funktion returns directly with the
return value FEISC_ERR_TASK BUSY (-4084) and the application must invoke
FEISC_CancelAsyncTask until the return value is not -4084. On application-side the
return from the callback function must be guaranteed.
iReaderHnd is the handle for the reader object.

Cross- Additional information about asynchronous tasks can be found in the section 5.4.

references Asynchronous tasks for relieving the load on applications.

5.7.12. FEISC StartAsyncTask

5.7.14. FEISC TriggerAsyncTask

Return value

In case of no error a O is returned. A value less than O indicates an error.

The list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 53 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.14. FEISC_TriggerAsyncTask

Function Triggers the next cycle in the inventory task.

Syntax int FEISC_TriggerAsyncTask(int iReaderHnd)

Description This function is used to trigger the next inventory cycle in the asynchronous task. The
asynchronous task must have been previously started with the TaskID =
FEISC_TASKID_EVERY_NEW_TAG.

This function is always invoked after the callback function has been exited. Without this
invoke a task with repeating function hangs up in a wait loop.
iReaderHnd is the handle for the reader object.

Cross- Additional information about asynchronous tasks can be found in the section 5.4.

references Asynchronous tasks for relieving the load on applications.

5.7.12. FEISC StartAsyncTask

5.7.13. FEISC CancelAsyncTask

Return value

In case of no error a O is returned. A value less than O indicates an error.

The list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 54 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.15. FEISC_BuildSendProtocol

Function The transmitted parameters and data are used to build a send protocol with a protocol
frame.

Syntax int FEISC_BuildSendProtocol(int iReaderHnd, UCHAR cBusAdr, UCHAR
cCmdByte, UCHAR* cSendData, int iDataLen, UCHAR* cSendProt, int iDataFormat
)

Description This function uses the transmitted parameters bus address (cBusAdr), command byte

(cCmdByte), send data (cSendData) and the information about the length of the send
data (iDataLen) to build a complete send protocol with protocol frame. The protocol
string is stored in cSendProt as a hex array (iDataFormat=0) or string (iDataFormat=1).
The buffer for cSendProt must be longer by a factor of one than the expected protocol
length, since a NUL character is appended.

For more information about the protocol frame, see the system manual for the ISC
Reader family.

iReaderHnd is the handle for the Reader object.

The constructed protocol is not passed along to a port driver (like FECOM).

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Note

This function does not yet support the USB protocols.

Return value

In case of no errors the length of cSendProt is indicated in the return value. In case of
errors a negative value is returned.

A list of error codes can be found in the Appendix.

Example

int BuildTestProtocol(int iReaderHnd)
{
intiErr, iDatalen;
UCHAR cSendData[32], cSendProt[256];
UCHAR cBusAdr = OxFF;
UCHAR cCmdByte= 0x6A;

cSendData[0] = 0x01;
cSendData[1] = "\0"
iDatalLen =1;

/I Build send protocol
iErr = FEISC_BuildProtocol(iReaderHnd, cBusAdr, cCmdByte, cSendData, iDatalen,
cSendProt, 0);

FEIG ELECTRONIC GmbH Page 55 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.16. FEISC_BuildRecProtocol

Function The transmitted parameters and data are used to build a receive protocol with a protocol
frame.

Syntax int FEISC_BuildRecProtocol(int iReaderHnd, UCHAR cBusAdr, UCHAR
cCmdByte, UCHAR cStatus, UCHAR* cRecData, int iDataLen, UCHAR* cRecProt,
int iDataFormat)

Description This function uses the transmitted parameters bus address (cBusAdr), command byte

(cCmdByte), status byte (cStatus), receive data (cRecData) and the information about
the length of the receive data (iDataLen) to build a complete receive protocol with
protocol frame. The protocol string is stored in cRecProt as a hex array (iDataFormat=0)
or string (iDataFormat=1). The buffer for cRecProt must be longer by a factor of one
than the expected protocol length, since a NUL character is appended.

For more information about the protocol frame, see the system manual for the OBID i-
scan® or OBID® classic-pro Reader family.

iReaderHnd is the handle for the Reader object.

The constructed protocol is not passed along to a port driver (like FECOM).

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Note

This function does not yet support the USB protocols.

Return value

In case of no errors the length of cRecProt is indicated in the return value. In case of
errors a negative value is returned.

A list of error codes can be found in the Appendix.

Example

Ananlog zu FEISC_BuildSendProt

FEIG ELECTRONIC GmbH Page 56 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.17. FEISC_SplitSendProtocol

Function Splits the transmitted protocol string.

Syntax int FEISC_SplitSendProtocol(int iReaderHnd, UCHAR* cSendProt, int iSendLen,
UCHAR* cBusAdr, UCHAR* cCmdByte, UCHAR* cSendData, int* iDatalLen, int
iDataFormat)

Description This function splits the data contained in cSendProt into bus address (cBusAdr),

command byte (cCmdByte), send data (cSendData) and the information about the
length of the send data (iDataLen). The protocol string in cSendProt must be transmitted
as a hex array (iDataFormat=0) or string (iDataFormat=1) with a length indication in
iSendLen.

cSendData is interpreted as a hex array (iDataFormat=0) or string (iDataFormat=1).

For more information about the protocol frame, see the system manual for the OBID i-
scan® or OBID® classic-pro Reader family.

iReaderHnd is the handle for the Reader object.

This function depends not of a port driver (like FECOM).

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Note

This function does not yet support the USB protocols.

Return value

If no error the function returns zero, and in case of error a value less than zero. A list of
error codes can be found in the Appendix.

Example

Analog to FEISC_SplitRecProt

FEIG ELECTRONIC GmbH Page 57 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.18. FEISC_SplitRecProtocol

Function Splits the transmitted protocol string.

Syntax int FEISC_SplitRecProtocol(int iReaderHnd, UCHAR* cRecProt, int iRecLen,
UCHAR* cBusAdr, UCHAR* cCmdByte, UCHAR* cRecData, int* iDatalLen, int
iDataFormat)

Description This function splits the data contained in cRecProt into bus address (cBusAdr),

command byte (cCmdByte), receive data (cRecData) and the information about the
length of the receive data (iDataLen). The protocol string in cRecProt must be
transmitted as a hex array (iDataFormat=0) or string (iDataFormat=1) with a length
indication in iRecLen.

cRecData is interpreted as a hex array (iDataFormat=0) or string (iDataFormat=1).

For more information about the protocol frame, see the system manual for the ISC
Reader family.

iReaderHnd is the handle for the Reader object.

This function depends not of a port driver (like FECOM).

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Note

This function does not yet support the USB protocols.

Return value

In case of no errors the status byte of the receive protocol is returned. A value greater
than 0x00 indicates an exception condition for the reader.

A list of error codes can be found in the Appendix.

Example

/I the following code fragment presupposes initialized port and Reader objects.
#include "feisc.h"
#include "fecom.h"

int iStatus, iRecLen;
UCHAR cBusAdr, cCmdByte;
UCHAR cSendProt[256], cRecProt[256], cRecData[256];
int iDataLen = 0;
// Build send protocol
FEISC_BuildProtocol(iReaderHnd, cBusAdr, cCmdByte, cSendData, cDatalen,
cSendProt, 0);
/I Send and receive protocol
iRecLen = FECOM_Transceive(iPortHnd, cSendProt, cSendProt[0], cRecProt, 256);
if(iRecLen>0)
{ /I Split receive protocol
iStatus = FEISC_SplitProtocol(iReaderHnd, cRecProt, iRecLen,
&cBusAdr, &cCmdByte, cRecData, &iDatalen, 0);
if(iStatus == 0) // Statusbyte == 0x00
{ /I Process receive data

FEIG ELECTRONIC GmbH Page 58 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.19. FEISC_SendTransparent

Function Outputs a protocol string directly over the interface; the receive protocol is returned.

Syntax int FEISC_SendTransparent(int iReaderHnd, UCHAR* cSendProt, int iSendLen,
UCHAR* cRecProt, int iMaxRecLen, int iCheckSum, int iDataFormat)

Description This function can be used to send protocol strings created using editors to a Reader.

This presupposes thorough knowledge of protocol frames.

The protocol with protocol frame contained in cSendProt is optionally expanded with the
checksum (iCheckSum = 1) and the receive protocol is stored in cRecProt. Both buffers
should be interpreted as hex array (iDataFormat=0) or string (iDataFormat=1).

The length of the protocol (number of characters in cSendProt) must be indicated in the
iSendLen parameter.

The receive protocol buffer should as a precaution be able to hold 256 characters
(iDataFormat=0) or 512 characters (iDataFormat=1). This buffer size must be indicated
in iMaxRecLen.

The buffer must be increased for Advanced Protocol Frames.

iReaderHnd is the handle for the Reader object.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Note

This function supports all FEIG port drivers.

Return value

In case of no errors the number of characters contained in cRecProt is sent.

A list of error codes can be found in the Appendix.

Example

int outLen, inLen;
UCHAR cSendProt[256];
UCHAR cRecProt[256];

/I Define send protocol

cSendProt[0] = 0x06; // Length byte

cSendProt[1] = OxFF; // Address byte

cSendProt[2] = 0x80; // Control byte

cSendProt[3] = 0x00; // Configuration address in Reader
outLen = 4;

/I Send protocol, first calculating and appending checksum

inLen = FEISC_SendTransparent(iReaderHnd, cSendProt, outLen, cRecProt, 256, 1, 0);
if(inLen > 0)

{ /I starting here code for processing the receive data

FEIG ELECTRONIC GmbH Page 59 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.20. FEISC_Transmit

Function Outputs a protocol string directly over the interface.

Syntax int FEISC_Transmit(int iReaderHnd, UCHAR* cSendProt, int iSendLen, int
iCheckSum, int iDataFormat)

Description This function can be used to send protocol string created using editors to a Reader. This

presupposes thorough knowledge of protocol frames.
There is no waiting for a reply protocol after sending the cSendProt protocol.

The protocol with protocol frame contained in cSendProt is optionally expanded with the
checksum (iCheckSum = 1) and the receive protocol is stored in cRecProt. Both buffers
should be interpreted as hex array (iDataFormat=0) or string (iDataFormat=1).

The length of the protocol (number of characters in cSendProt) must be indicated in the
iSendLen parameter. If iDataFormat=1, then iSendLen is twice as large as in the case of
iDataFormat=0.

iReaderHnd is the handle for the Reader object.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Note

This function supports all FEIG port drivers.

Return value

In case of error a 0 is transferred.

A list of error codes can be found in the Appendix.

Example

int outLen;
UCHAR cSendProt[256];

/I Define send protocol

cSendProt[0] = 0x06; // Length byte

cSendProt[1] = OxFF; // Address byte

cSendProt[2] = 0x80; // Command byte for Read Configuration
cSendProt[3] = 0x00; // Configuration address in Reader
outLen = 4;

/I Send protocol, first calculating and appending checksum
FEISC_Transmit(iReaderHnd, cSendProt, outLen, 1, 0);

FEIG ELECTRONIC GmbH Page 60 (of 124) H9391-43e-1D-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.21. FEISC_Receive

Function Receives a protocol string directly from the interface.

Syntax int FEISC_Receive(int iReaderHnd, UCHAR* cRecProt, int iReclLen, int
iDataFormat)

Description This function reads a protocol directly out of the receive buffer and stores it in cRecProt.

If an ISC Reader has already send several protocols, the function reads in all the
protocols. In this case cRecProt contains all protocols.

A maximum of 256 ASCI| characters can be taken from the receive buffer.

The receive protocol buffer should as a precaution be able to hold 256 characters
(iDataFormat=0) or 512 characters (iDataFormat=1). This buffer size must be indicated
in iRecLen.

The buffer must be increased for Advanced Protocol Frames.

iReaderHnd is the handle for the Reader object.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Note

This function supports all FEIG port drivers.

Return value

In case of no errors the number of characters contained in cRecProt is transmitted. If
iDataFormat=1, then iSendLen is twice as large as in the case of iDataFormat=0.

A list of error codes can be found in the Appendix.

Example

int inLen;
UCHAR cRecProt[256];

/I Receive protocol
inLen = FEISC_Receive(iReaderHnd, cRecProt, 256, 0);

FEIG ELECTRONIC GmbH Page 61 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.22. FEISC_GetLastSendProt

Function Returns the last send protocol string.

Syntax int FEISC_GetLastSendProt(int iReaderHnd, UCHAR* cSendProt, int iDataFormat
)

Description This function can be used to get the last sent send protocol from a Reader object. All

functions which begin with FEISC Ox... as well as the function
FEISC_SendTransparent store this protocol in the Reader object.

The send protocol buffer cSendProt should as a precaution be able to hold 256
characters (iDataFormat=0) or 512 characters (iDataFormat=1). cSendProt should be
interpreted as a hex array (iDataFormat=0) or string (iDataFormat=1).

The buffer must be increased for Advanced Protocol Frames.

iReaderHnd is the handle for the Reader object.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

In case of no errors the return value contains the number of characters contained in
cSendProt.

A list of error codes can be found in the Appendix.

5.7.23. FEISC_GetLastRecProt

Function Returns the last received protocol string.
Syntax int FEISC_GetLastRecProt(int iReaderHnd, UCHAR* cRecProt, int iDataFormat)
Description This function can be used to get the last receive protocol from a Reader object. All

functions which begin with FEISC_Ox... as well as the function
FEISC_SendTransparent store this protocol in the Reader object.

The receive protocol buffer cRecProt should as a precaution be able to hold 256
characters (iDataFormat=0) or 512 characters (iDataFormat=1). cRecProt should be
interpreted as a hex array (iDataFormat=0) or string (iDataFormat=1).

The buffer must be increased for Advanced Protocol Frames.

iReaderHnd is the handle for the Reader object.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

In case of no errors the return value contains the number of characters contained in
cRecProt.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 62 (of 124) H9391-43e-1D-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.24. FEISC_GetlLastState

Function Returns the status byte contained in the last receive protocol.
Syntax int FEISC_GetLastStatus(int iReaderHnd, char* cStatusText)
Description This function can be used to get the status byte from a Reader object and a short text

for the status byte of the last receive protocol. All functions which begin with
FEISC_0x... as well as the function FEISC_SendTransparent store this protocol in the
Reader object.

The buffer for the short text cStateText should be able to hold at least 256 characters.

iReaderHnd is the handle for the Reader object.

Return value

In case of no errors the return value contains the status byte.

A list of error codes can be found in the Appendix.

5.7.25. FEISC_GetLastRecProtLen

Function Gets the length of the last receive protocol.
Syntax int FEISC_GetLastRecProtLen(int iReaderHnd)
Description Sometimes it is helpful to be able to get the length of the data contained in it from the

protocol length. This protocol length is what this function gets.

Example: The function FEISC_0x21 ReadBuffer provides some data records for a data
structure. You could get the total length of the data by analyzing the data sets, but it is
much simpler to use the protocol length and deduct 6 bytes for the protocol frame and
another 2 bytes for the parameters cTrData and cRecDataSets.

iReaderHnd is the handle for the Reader object.

Return value

In case of no errors the return value contains the protocol length.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 63 (of 124) H9391-43e-1D-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.26. FEISC_GetlLastError

Function Gets the last error code and transmits error text.
Syntax int FEISC_GetLastError(int iReaderHnd , int* iErrorCode, char* cErrorText)
Description The function uses iErrorCode to send the last error code of the Reader object selected

withiReaderHnd and transmits the associated error text in cErrorText.

The buffer for cErrorText should be able to hold at least 256 characters.

Return value

If no error the function returns zero, and in case of error a value less than zero. A list of
error codes can be found in the Appendix.

Example

#include "feisc.h"

char cErrorText[256];
int iErrorCode = 0;

int iBack = FEISC_GetLastError(iReaderHnd, &iErrorCode, cErrorText)
/I code here for displaying the text

FEIG ELECTRONIC GmbH Page 64 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.27. FEISC_0x18_Destroy

Function Function destroys an Transponder.

Syntax int FEISC_0x18_Destroy(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode, UCHAR*
cEPC, UCHAR* cPW)

Note This function will render an Transponder permanently unable to give any replies.

cMode is the mode byte.

cEPC is a pointer to the buffer with the EPC or UID. The length of the EPC or UID is
calculated internally based on the mode byte and the EPC header.

cPW is a pointer to the buffer with the 3 byte password.
iReaderHnd ist der Handle zum Leser-Objekt.

cBusAdr ist die im multijob-Leser eingestellte Busadresse.

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 65 (of 124) H9391-43e-ID-B.doc

OBID®

Manual

5.7.28. FEISC_Ox1A_Halt

Function Function for turning off transponders.
Syntax int FEISC_Ox1A_Halt(int iReaderHnd, UCHAR cBusAdr)
Description This function turns off a previously selected transponder. The FEISC_0x69 RFReset

function can be used to reactivate all the transponders which are turned off.
iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.29. FEISC_0x1B_ResetQuietBit

Function Function for resetting the Quiet bit.
Syntax int FEISC_0x1B_ResetQuietBit(int iReaderHnd, UCHAR cBusAdr)
Description The function resets the Quiet bit in the transponder Type |-Code.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.30. FEISC_0x1C_EASRequest

Function Function for sending the EAS Request
Syntax int FEISC_0x1C_EASRequest(int iReaderHnd, UCHAR cBusAdr)
Description The function sends an EAS Request to the transponder Type I-Code.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH

Page 66 (of 124)

ID FEISC V7.02.00

H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.31. FEISC_0x1F_MAXDataExchange

Function Function for data transfer with a myAxxess Reader

Syntax int FEISC_Ox1F _MAXDataExchange(int iReaderHnd, UCHAR cBusAdr, UCHAR
cSubCmd, UCHAR cMode, UCHAR cTablelD, UCHAR* cRegData, int iReqDataLen, UCHAR*
cRspData, int* iRspDataLen, int iDataFormat)

Description This function realizes the read and write of all data records of different tables, identified
by cTablelD, from/into a myAxxess Reader. cSubCmd contains the command byte to
define the action.
cMode contains optional flags.
The parameter iDataFormat specifies whether the request data in cReqData and
response data in cRspData is to be interpreted as a hex array (iDataFormat=0) or as a
string (iDataFormat=1).
All parameters are declared in detail in the system manual of the designated reader.
iReaderHnd is the handle for the Reader object.
cBusAdr is the bus address set in the multijob-Reader.

Note This function is a low-level function and should not be used directly for application

development. FEIG has build a more comfortable C++ Library, called FEDM, with a
high-level API for myAxxess Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 67 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.32. FEISC_0x21_ReadBuffer

Function

Function for data transfer with a transponder

Syntax

int FEISC_0x21_ ReadBuffer(int iReaderHnd, UCHAR cBusAdr, UCHAR cSets, UCHAR*
cTrData, UCHAR* cRecSets, UCHAR* cRecDataSets, int iDataFormat)

Description

The function reads the number of data sets cSets from the internal data table and stores
the data in cRecDataSets.

cTrData defines the structure of a data set in cRecDataSets.
The number of returned data sets in cRecDataSets is indicated in cRecSets.

The parameter iDataFormat determines whether the receive data in cRecDataSets are
to be interpreted as a hex array or as a string. cRecSets and cTrData always consist of
1 hex character.

The cRecDataSets buffer should be dimensioned as follows:
e iDataFormat=0: 256 characters (incl. 1 NUL character)
e iDataFormat=1: 512 characters (incl. 1 NUL character)

The data contained in cRecDataSets are inserted in the order described in the system
manual for the OBID i-scan® family.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the multijob-Reader.

Note

The function does not check the data in cRecDataSets based on the data structure
indicated in cTrData.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

FEISC_0x33_InitBuffer, FEISC_0x31_ReadDataBufferinfo,
FEISC_0x32_ClearDataBuffer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 68 (of 124) H9391-43e-1D-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.33. FEISC_0x22_ReadBuffer

Function

Function for data transfer with a transponder

Syntax

int FEISC_0x22_ ReadBuffer(int iReaderHnd, UCHAR cBusAdr, int iSets, UCHAR*
cTrData, int* iRecSets, UCHAR* cRecDataSets, int iDataFormat)

Description

The function reads the number of data sets iSets from the internal data table and stores
the data in cRecDataSets.

cTrData defines the structure of a data set in cRecDataSets.
The number of returned data sets in cRecDataSets is indicated in iRecSets.

The parameter iDataFormat determines whether the receive data in cRecDataSets are
to be interpreted as a hex array or as a string. cRecSets and cTrData always consist of
1 hex character.

The cRecDataSets buffer should be dimensioned for containing all Transponder data. If
iDataFormat=1, then the buffer cRecDataSets must be redoubled.

The data contained in cRecDataSets are inserted in the order described in the system
manual for the OBID i-scan® family.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the multijob-Reader.

Note

The function does not check the data in cRecDataSets based on the data structure
indicated in cTrData.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

FEISC_0x33_InitBuffer, FEISC_0x31_ReadDataBufferinfo,
FEISC_0x32_ClearDataBuffer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 69 (of 124) H9391-43e-1D-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.34. FEISC_0x31_ReadDataBufferinfo

Function Function gets table parameters for the internal data buffer.

Syntax int FEISC_0x31_ReadDataBufferInfo(int iReaderHnd, UCHAR cBusAdr, UCHAR*
cTabSize, UCHAR* cTabStart, UCHAR* cTabLen, int iDataFormat)

Description The function reads the table parameters from the internal buffer table and stores them in

cTabSize , cTabStart and cTabLen.

The parameter iDataFormat determines whether the table parameters are to be
interpreted as a hex array or as a string.

The cTabSize , cTabStart and cTabLen buffers must be dimensioned as follows:
e iDataFormat=0: 3 Characters (incl. 1 NUL character)
e iDataFormat=1: 5 Characters (incl. 1 NUL character)

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the multijob-Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

FEISC _0x21 ReadBuffer, FEISC_0x22_ReadBuffer, FEISC_0x33_InitBuffer,
FEISC_0x32_ClearDataBuffer,

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.35. FEISC_0x32_ClearDataBuffer

Function Function clears entries read from the internal data buffer.
Syntax int FEISC_0x32_ClearDataBuffer(int iReaderHnd, UCHAR cBusAdr)
Description The function clears the entries read out from the Reader-internal data buffer by

FEISC _0x21 ReadBuffer.
iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the multijob-Reader.

Cross-reference

FEISC_0x21 ReadBuffer, FEISC_0x22_ ReadBuffer, FEISC 0x33_InitBuffer,
FEISC _0x31 ReadDataBufferinfo

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 70 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.36. FEISC_0x33_InitBuffer

Function Function for initializing the Reader-internal data table.
Syntax int FEISC_0x33_InitBuffer(int iReaderHnd, UCHAR cBusAdr)
Description The function initializes the internal data table for the Buffered Read Mode.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

FEISC_0x21 ReadBuffer, FEISC 0x21_ ReadBuffer,
FEISC_0x31 ReadDataBufferinfo

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.37. FEISC_0x34_ForceNotifyTrigger

Function Function to trigger a notification

Syntax int FEISC_0x34_ForceNotifyTrigger(int iReaderHnd, UCHAR cBusAdr, UCHAR ucMode
)

Description This function triggers at once a notification, which transfers data records from the

internal Buffered Read Mode table to the Host. The function returns immediately after

the execution and in front of the notification.

This function is only wusefull, if a background task is prepated
FEISC_StartAsyncTask to receive notifications.

The parameter ucMode is actually unused and should be contain 0x00.
iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

with

Cross-reference

5.4. Asynchronous tasks for relieving the load on applications

5.7.12. FEISC StartAsyncTask

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 71 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.38. FEISC_0x52_GetBaud

Function Test function for getting baud rate and parity.
Syntax int FEISC_0x52_GetBaud(int iReaderHnd, UCHAR cBusAdr)
Description If the reply telegram can be received, the configured baud rate and parity are the same

as for the Reader.
iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.39. FEISC_0x55_StartFlashLoader

Function The function starts the flash loader.
Syntax int FEISC_0x55_StartFlashLoader(int iReaderHnd)
Description The function starts the Reader flash loader. The Reader must have bus address O.

iReaderHnd is the handle for the Reader object.

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.40. FEISC_0x55_StartFlashLoaderEx

Function The function starts the flash loader.
Syntax int FEISC_0x55_StartFlashLoaderEx(int iReaderHnd, UCHAR cBusAdr)
Description The function starts the Reader flash loader. This advanced function supports any

busaddress.
iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH

Page 72 (of 124) H9391-43e-1D-B.doc

OBID® Manual ID FEISC V7.02.00

5.7.41. FEISC_0x63_CPUReset

Function Function initiates a reset in the Reader's CPU
Syntax int FEISC_0x63 CPUReset(int iReaderHnd, UCHAR cBusAdr)
Description Function initiates a reset in the Reader’'s CPU

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.42. FEISC_0x64_SystemReset

Function Function initiates a reset in a part of the Reader.
Syntax int FEISC_0x64 SystemReset(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode)
Note Function initiates a reset in a part of the Reader

cMode defines the Controller to be reset.
iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 73 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.43. FEISC_0x65_SoftVersion

Function Function reads out the Reader version number.

Syntax int FEISC_0x65_SoftVersion(int iReaderHnd, UCHAR cBusAdr, UCHAR* cVersion,
int iDataFormat)

Description The Reader version number is gotten and stored in cVersion.

The parameter iDataFormat specifies whether the version number in cVersion is to be
interpreted as a hex array or as a string.

The buffer for the version must be able to hold at least 8 bytes (iDataFormat=0) or 15
bytes (iDataFormat=1). One byte is intended for the NUL character.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.44. FEISC_0x66_ReaderInfo

Function Function reads out informations of a part of the Reader.

Syntax int FEISC_0x66_ReaderInfo(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode,
UCHAR* ciInfo, int iDataFormat)

Description The information of a part of the Reader is gotten and stored in cinfo.

cMode defines the part of the Reader.

The parameter iDataFormat specifies whether the information in cInfo is to be
interpreted as a hex array or as a string.

The buffer for cinfo must be able to hold all bytes. One byte is intended for the NUL
character. For detailed informations, please refer to the system manual of the OBID i-
scan® family

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 74 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

5.7.45. FEISC_0x69 RFReset

Function Function initiates a reset for the antenna field.
Syntax int FEISC_0x69_ RFReset(int ReaderHnd, UCHAR cBusAdr)
Description Function initiates a reset for the Reader’s antenna field. All transponders previously

turned off by FEISC_0x1A_Halt are reactivated.
iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.46. FEISC_Ox6A_RFONOff

Function Function for turning the antenna field on/off.
Syntax int FEISC_Ox6A_RFONOff(int iReaderHnd, UCHAR cBusAdr, UCHAR cRF)
Description A 0 in cRF turns the antenna field off.

A 1in cRF turns the antenna field on.
iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 75 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

5.7.47. FEISC_0x6B_CentralizedRFSync

Function Function to synchronize antennas.

Syntax int FEISC_0x6B_CentralizedRFSync (int iReaderHnd, UCHAR cBusAdr, UCHAR
cMode, UCHAR cTxChannel, int iTxPeriod, UCHAR cRes1, UCHAR cRes2)

Description The parameters are described in the system manual of the reader.
iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 76 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.48. FEISC_0x6C_SetNoiselLevel

Function Function for setting the noise level.

Syntax int FEISC_0x6C_SetNoiseLevel(int iReaderHnd, UCHAR cBusAdr, UCHAR*
cLevel, int iDataFormat)

Description cLevel contains the 3 level values which are sent as a hex array with a total of 6 bytes

(iDataFormat=0) or as a string with a total of 12 bytes (iDataFormat=1).
iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.49. FEISC_0x6D_GetNoiselLevel

Function Function for getting the noise level.

Syntax int FEISC_0x6D_GetNoiseLevel(int iReaderHnd, UCHAR cBusAdr, UCHAR*
cLevel, int iDataFormat)

Description The 3 level values are stored in cLevel.

The buffer for cLevel must be dimensioned as follows:
1. iDataFormat=0: 7 bytes (incl. NUL character)
2. iDataFormat=1: 13 bytes (incl. NUL character)

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 77 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

5.7.50. FEISC_Ox6E_RdDiag

Function Function for Reader diagnostics.

Syntax int FEISC_O0x6E_RdDiag(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode,
UCHAR* cData)

Description The function returns diagnostics values for the handle stored in cMode.

The buffer for the receive data cData must be sufficiently dimensioned.
iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference | For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.51. FEISC_0Ox6F_AntennaTuning

Function Function enables a special mode in the reader.
Syntax int FEISC_Ox6F_AntennaTuning(int ReaderHnd, UCHAR cBusAdr)
Description This function enables a special tuning mode in the reader. The reader must be reset for

disabling this mode.
iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 78 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.52. FEISC_0x71_SetOutput

Function Function activates the Reader’s outputs.

Syntax int FEISC_0x71_SetOutput(int iReaderHnd, UCHAR cBusAdr, int iOS, int iOSF, int
iOSTime, int iOutTime)

Description The function activates the Reader’'s outputs. All times are multiplied internally in the

Reader by 100 and are to be interpreted in units of ms. The value ranges indicated in
the system manual for the ISC Reader family are applicable.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.53. FEISC_0x72_SetOutput

Function Function activates the Reader’s outputs.

Syntax int FEISC_0x72_SetOutput(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode,
UCHAR cOutN, UCHAR* pRecords)

Description The function activates the Reader’s outputs. The number of outputs to be activated is

set with cOutN. The activation parameters of each output must be collected in a buffer.
pRecords is the pointer to this buffer. The parameter cMode is the mode byte of the
protocol.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 79 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.54. FEISC_0x74_Readlnput

Function Function reads the status of the digital inputs.
Syntax int FEISC_0x74_ReadInput(int iReaderHnd, UCHAR cBusAdr, UCHAR* clnput)
Description The function reads the digital inputs and stores the status in clnput. The length of cinput

is 1.
iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.55. FEISC_0x75_AdjAntenna

Function Function for reading the antenna level.

Syntax int FEISC_0x75_AdjAntenna(int iReaderHnd, UCHAR cBusAdr, UCHAR* cLevel,
int iDataFormat)

Description The read level value is stored in cLevel.

The buffer for cLevel must be dimensioned as follows:
3. iDataFormat=0: 3 bytes (incl. NUL character)
4. iDataFormat=1: 5 bytes (incl. NUL character)

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 80 (of 124) H9391-43e-1D-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.56. FEISC_0x76_CheckAntennas

Function Function for detecting antennas.

Syntax int FEISC_0x76_CheckAntennas(int iReaderHnd, UCHAR cBusAdr, UCHAR
cMode, UCHAR* cAntOut, int* iAntOutLen)

Description cMode is for future use.

cAntOut contains flag fields with one flag for each detected antenna. iAntOutLen returns
the number of bytes in cAntOut. A maximum of 5 bytes is possible. Thus, the buffer for
cAntOut must be dimensioned for 5 bytes..

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 81 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.57. FEISC_0x80_ReadConfBlock

Function Function reads a configuration block from the Reader.

Syntax int FEISC_0x80_ReadConfBlock(int iReaderHnd, UCHAR cBusAdr, UCHAR
cConfAdr, UCHAR* cConfBlock, int iDataFormat)

Description This function allows you to read a configuration block from address cConfAdr of the

Reader. The data read out in cConfBlock are to be interpreted as a hex array
(iDataFormat=0) or as a string (iDataFormat=1).

The buffer for the configuration data cConfBlock must be dimensioned as follows:
1. iDataFormat=0: 15 bytes (incl. 1 NUL character)
2. iDataFormat=1: 29 bytes (incl. 1 NUL character)

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.58. FEISC_0x81_ WriteConfBlock

Function Function writes a configuration block to the Reader.

Syntax int FEISC_0x81 WriteConfBlock(int iReaderHnd, UCHAR cBusAdr, UCHAR
cConfAdr, UCHAR* cConfBlock, int iDataFormat)

Description This function lets you write a configuration block to address cConfAdr of the Reader.

The configuration data must be stored in cConfBlock as a hex array (iDataFormat=0) or
string (iDataFormat=1).

The buffer with the configuration data must contain 14 bytes (iDataFormat=0) or 28
bytes (iDataFormat=1).

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 82 (of 124) H9391-43e-1D-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.59. FEISC_0x82_SaveConfBlock

Function Function saves a configuration block in the Reader.

Syntax int FEISC_0x82_SaveConfBlock(int iReaderHnd, UCHAR cBusAdr, UCHAR
cConfAdr)

Description This function allows you to write a configuration block for address cConfAdr from RAM

memory to the EEPROM (non-volatile memory) and save it for a longer period.
iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.60. FEISC_0x83_ResetConfBlock

Function Function loads the factory setting into a configuration block in the Reader.

Syntax int FEISC_0x83 ResetConfBlock(int iReaderHnd, UCHAR cBusAdr, UCHAR
cConfAdr)

Description This function allows you to load the parameters for the factory default settings into a

configuration block for address cConfAdr.
iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 83 (of 124) H9391-43e-1D-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.61. FEISC_0x85_SetSysTimer

Function

Sets the system time in the Reader.

Syntax

int FEISC_0x85_SetSysTimer(int iReaderHnd, UCHAR cBusAdr, UCHAR* cTime,
int iDataFormat)

Description

The function initializes the system time in the Reader.

The buffer cTime must contain 4 bytes (iDataFormat=0) or be a string with 8 characters
(iDataFormat=1).

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.62. FEISC_0x86_GetSysTimer

Function

Reads the system time from the Reader.

Syntax

int FEISC_0x86_GetSysTimer(int iReaderHnd, UCHAR cBusAdr, UCHAR* cTime,
int iDataFormat)

Description

This function gets the system time from the Reader.

The buffer for cTime must be dimensioned as follows:
5. iDataFormat=0: 5 Characters (incl. 1 NUL character))
6. iDataFormat=1: 9 Characters (incl. 1 NUL character))

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 84 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.63. FEISC_0x87_SetSystemDate

Function Sets the system date and time in the Reader.

Syntax int FEISC_0x87_SetSystemDate(int iReaderHnd, UCHAR cBusAdr, UCHAR
cCentury, UCHAR cYear, UCHAR cMonth, UCHAR cDay, UCHAR cTimezone,
UCHAR cHour, UCHAR cMinute, int iMilliSecond)

Description The function initializes the system date and time in the Reader.

cCentury : century (e.g. 20)

cYear s year (e.g. 4)

cMonth : month (e.g. 10)

cDay : day (e.g. 5)

cTimezone :timezone (actually unused)
cHour : hour (e.g. 15)

cMinute : minute (e.g. 13)

iMilliSecond : milliseconds, containing also the seconds (e.g. 1234 for 1s and 234ms)
iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.64. FEISC_0x88_GetSystemDate

Function Reads the system date and time from the Reader.

Syntax int FEISC_0x88_GetSystemDate(int iReaderHnd, UCHAR cBusAdr, UCHAR*
cCentury, UCHAR* cYear, UCHAR* cMonth, UCHAR* cDay, UCHAR* cTimezone,
UCHAR* cHour, UCHAR* cMinute, int* iMilliSecond)

Description This function gets the system date and time from the Reader.

The function parameters are described in 5.7.63. FEISC_0x87_ SetSystemDate.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 85 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.65. FEISC_0x8A_ReadConfiguration

Function Function reads configuration blocks from the Reader.

Syntax int FEISC_O0x8A_ReadConfiguration(int iReaderHnd, UCHAR cBusAdr, UCHAR
cDevice, UCHAR cBank, UCHAR cMode, int iRegBlockAdr, UCHAR
cReqBlockCount, UCHAR* cRspBlockCount, UCHAR* cRspBlockSize, UCHAR*
cRspData)

Description This function allows you to read one configuration block or multiple or all configuration

blocks from address cReqBlockAdr of the Reader. The data read out in cRspData are
stored with increasing address.

The parameter cDevice identifies the controller in the Reader, cBank the configuration
memory and cMode additional options. More information can be found in the system
manual of the Reader.

The buffer for the responded configuration data cRspData must be dimensioned for the
size cRegBlockCount x cRspBlockSize bytes.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 86 (of 124) H9391-43e-1D-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.66. FEISC_0x8B_WriteConfiguration

Function Function writes configuration blocks into the Reader.

Syntax int FEISC_0x8B_WriteConfiguration(int iReaderHnd, UCHAR cBusAdr, UCHAR
cDevice, UCHAR cBank, UCHAR cMode, UCHAR cRegBlockCount, UCHAR
cReqBlockSize, UCHAR* cRegData)

Description This function allows you to write one configuration block or multiple or all configuration

blocks into the Reader. The configuration data must be stored with increasing address
order in which the configuration address is put in front of each configuration block.

The parameter cDevice identifies the controller in the Reader, cBank the configuration
memory and cMode additional options. More information can be found in the system
manual of the Reader.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 87 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.67. FEISC_0x8C_ResetConfiguration

Function Function loads factory default settings into the Reader.

Syntax int FEISC_0x8C_ResetConfiguration(int iReaderHnd, UCHAR cBusAdr, UCHAR
cDevice, UCHAR cBank, UCHAR cMode, int iRegBlockAdr, UCHAR
cReqBlockCount)

Description This function allows you to load factory settings for one configuration block or multiple or

all configuration blocks beginning with address cRegBlockAdr into the Reader.

The parameter cDevice identifies the controller in the Reader, cBank the configuration
memory and cMode additional options. More information can be found in the system
manual of the Reader.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 88 (of 124) H9391-43e-1D-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.68. FEISC_0x9F_Piggyback_Command

Function Function transports an embedded protocol to an external Function Unit

Syntax int FEISC_Ox9F_Piggyback_Command(int iReaderHnd, UCHAR cBusAdr, UCHAR
cMode, UCHAR cDevice, UCHAR cPort, UCHAR* cReqgPrt, int iReqLen, UCHAR*
cRspPrt, int*iRspLen)

Description This function transports an emebedded protocol in cRegPrt to a Reader, which forwards

it to a connected external Function Unit (e. g. People Counter ID ISC.ANTGPC). For
building the embedded protocol the function FEISC_BuildSendProtocol can be used.

The parameter cDevice hames the type of the external Function Unit, cPort contains the
onboard communication port and cMode contains additional options. Detailed
information can be found in the system manual of the Function Unit.

The buffer for the receive protocoll in cRspPrt must be sufficient dimensioned. The
embedded receive protocol can be analysed and separated with the function
FEISC_SplitRecProtocol.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

5.7.15. FEISC BuildSendProtocol

5.7.18. FEISC SplitRecProtocol

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 89 (of 124) H9391-43e-1D-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.69. FEISC_0xAO_RdLogin

Function Function performs a login in the Reader.

Syntax int FEISC_0xAO_RdLogin(int iReaderHnd, UCHAR cBusAdr, UCHAR* cRd_PW, int
iDataFormat)

Description The function uses the password cRd_PW to login to the Reader.

The parameter iDataFormat specifies whether the password in cRd_PW is to be
interpreted as a hex array (iDataFormat=0) or as a string (iDataFormat=1).

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 90 (of 124) H9391-43e-1D-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.70. FEISC_0OxA2_WriteMifareKeys

Function Function writes authentication key into the reader.

Syntax int FEISC_0xA2_WriteMifareKeys(int iReaderHnd, UCHAR cBusAdr, UCHAR
cType, UCHAR cAdr, UCHAR* cKey, int iDataFormat)

Note Be careful with this function.
You cannot read back the authentication key from the reader.

Description This function writes the authentication key for a Mifare-Transponder into the EEPROM

of the reader.

cType defines the key type, cAdr specifies the EEPROM address of the key in the
reader.

The parameter iDataFormat specifies whether the authentication key in cKey is to be
interpreted as a hex array (iDataFormat=0) or as a string (iDataFormat=1).

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 91 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.71. FEISC_O0xA3 Write DES_AES Keys

Function Function writes authentication key into the reader.

Syntax int FEISC_0xA3_Write DES_AES Keys(int iReaderHnd, UCHAR cBusAdr, UCHAR
cMode, UCHAR cReaderKeyindex, UCHAR cAuthentMode, UCHAR cKeyLen,
UCHAR* cKey, int iDataFormat)

Note Be careful with this function.
You cannot read back the authentication key from the reader.

Description This function writes the authentication key for a 1SO 14443-4, Type A DESFire-

Transponder into the EEPROM of the reader.
All parameters are declared in detail in the system manual of the designated reader.

The parameter iDataFormat specifies whether the authentication key in cKey is to be
interpreted as a hex array (iDataFormat=0) or as a string (iDataFormat=1).

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 92 (of 124) H9391-43e-1D-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.72. FEISC_OxAD_WriteReaderAuthentKey

Function Function writes authentication key into the reader.

Syntax int FEISC_OxAD_WriteReaderAuthentKey(int iReaderHnd, UCHAR cBusAdr,
UCHAR cMode, UCHAR cKeyType, UCHAR cKeyLen, UCHAR* cKey, int
iDataFormat)

Note Be careful with this function.

You cannot read back the authentication key from the reader.
Description This function writes the authentication key for secured data transmission into the

Reader.
All parameters are declared in detail in the system manual of the designated reader.

The parameter iDataFormat specifies whether the authentication key in cKey is to be
interpreted as a hex array (iDataFormat=0) or as a string (iDataFormat=1).

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

Basic information about secured data transmission can be found in 5.6. Secured data
transmission with encryption.

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 93 (of 124) H9391-43e-1D-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.73. FEISC_OxAE_ReaderAuthent

Funktion Authentication function

Syntax int FEISC_OxAE_ReaderAuthent(int iReaderHnd, UCHAR cBusAdr, UCHAR
cMode, UCHAR cKeyType, UCHAR cKeyLen, UCHAR* cKey, int iDataFormat)

Note Be careful with this function.
You cannot read back the authentication key from the reader.

Description This function writes the authentication key for secured data transmission into the

Reader.
All parameters are declared in detail in the system manual of the designated reader.

The parameter iDataFormat specifies whether the authentication key in cKey is to be
interpreted as a hex array (iDataFormat=0) or as a string (iDataFormat=1).

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

Basic information about secured data transmission can be found in 5.6. Secured data
transmission with encryption.

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 94 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.74. FEISC_OxBO0_ISOCmd

Function Function initiates data transfer with ISO15693 or 1ISO14443 transponders.

Syntax int FEISC_0xB0_ISOCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR* cReqgData, int
iRegLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

Description The function initiates a data transfer for multiple 1ISO15693 or 1SO14443 transponders

located in the active zone of the ISC Reader.

The data necessary for the data transfer are to be stored in cRegData. The number of
characters contained in cRegData must be indicated in iReqgLen.

The data read from the 1SO15693 oder 1SO14443 transponder are contained in
cRspData. iRspLen indicates the number of characters in cRspData.

The parameter iDataFormat specifies whether cRegData and cRspData are to be
interpreted as a hex array or as a string.

Note the following: The buffer for the receive data cRspData must be dimensioned such
that all the receive data can be stored. This means in the case of iDataFormat=1 that the
size of the buffer cRspData is twice as large as in the case of iDataFormat=0. The
length of the send data (number of characters in cReqData) must be indicated in
iRegLen. If iDataFormat=1, then iReglLen is twice as large as in the case of
iDataFormat=0. The length indication for the receive buffer (cRspData) is to be handled
analogously.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

FEIG ELECTRONIC GmbH Page 95 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.75. FEISC_0xB1_1SOCustAndPropCmd

Function Function initiates data transfer with an 1ISO15693 transponder.

Syntax int FEISC_0xB1 ISOCustAndPropCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR
cMfr, UCHAR* cReqData, int iRegLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

Description The function initiates a data transfer for multiple 1ISO15693 transponders located in the

active zone of the ISC Reader.

The parameter cMfr contains the manufacturer code and specifies the structure of send
data cRegData and receive data cRspData.

The data necessary for the data transfer are to be stored in cRegData. The number of
characters contained in cRegData must be indicated in iReqgLen.

The data read from the ISO15693 transponder are contained in cRspData. iRspLen
indicates the number of characters in cRspData.

The parameter iDataFormat specifies whether cRegData and cRspData are to be
interpreted as a hex array or as a string.

Note the following: The buffer for the receive data cRspData must be dimensioned such
that all the receive data can be stored. This means in the case of iDataFormat=1 that the
size of the buffer cRspData is twice as large as in the case of iDataFormat=0. The
length of the send data (number of characters in cReqData) must be indicated in
iRegLen. If iDataFormat=1, then iReglLen is twice as large as in the case of
iDataFormat=0. The length indication for the receive buffer (cRspData) is to be handled
analogously.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

FEIG ELECTRONIC GmbH Page 96 (of 124) H9391-43e-1D-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.76. FEISC_0xB2_ISOCmd

Function Function initiates data transfer with an 1SO14443 transponder.

Syntax int FEISC_0xB2_1SOCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR* cReqgData, int
iRegLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

Description The function initiates a data transfer for multiple 1SO14443 transponders located in the

active zone of the ISC Reader.

The data necessary for the data transfer are to be stored in cRegData. The number of
characters contained in cRegData must be indicated in iReqgLen.

The data read from the 1SO14443 transponder are contained in cRspData. iRspLen
indicates the number of characters in cRspData.

The parameter iDataFormat specifies whether cRegData and cRspData are to be
interpreted as a hex array or as a string.

Note the following: The buffer for the receive data cRspData must be dimensioned such
that all the receive data can be stored. This means in the case of iDataFormat=1 that the
size of the buffer cRspData is twice as large as in the case of iDataFormat=0. The
length of the send data (number of characters in cReqData) must be indicated in
iRegLen. If iDataFormat=1, then iReglLen is twice as large as in the case of
iDataFormat=0. The length indication for the receive buffer (cRspData) is to be handled
analogously.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

FEIG ELECTRONIC GmbH Page 97 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.77. FEISC_0xB3_EPCCmd

Function Function initiates data transfer with an UHF EPC-Transponder.

Syntax int FEISC_0xB3_EPCCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR* cReqData, int
iRegLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

Description The function initiates a data transfer with an UHF EPC-Transponders located in the

active zone of the Reader.

The data necessary for the data transfer are to be stored in cRegData. The number of
characters contained in cRegData must be indicated in iReqgLen.

The data read from the transponder are contained in cRspData. iRspLen indicates the
number of characters in cRspData.

The parameter iDataFormat specifies whether cRegData and cRspData are to be
interpreted as a hex array or as a string.

Note the following: The buffer for the receive data cRspData must be dimensioned such
that all the receive data can be stored. This means in the case of iDataFormat=1 that the
size of the buffer cRspData is twice as large as in the case of iDataFormat=0. The
length of the send data (number of characters in cRegData) must be indicated in
iRegLen. If iDataFormat=1, then iReglLen is twice as large as in the case of
iDataFormat=0. The length indication for the receive buffer (cRspData) is to be handled
analogously.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

FEIG ELECTRONIC GmbH Page 98 (of 124) H9391-43e-1D-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.78. FEISC_OxB4_EPC_UHF_Cmd

Function Function initiates data transfer with an UHF EPC-Transponder.

Syntax int FEISC _0xB4 EPC_UHF_Cmd(int iReaderHnd, UCHAR cBusAdr, UCHAR cMfr,
UCHAR* cRegData, int iRegLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

Description The function initiates a data transfer with an UHF EPC-Transponders located in the

active zone of the Reader.

The parameter cMfr contains the manufacturer code and specifies the structure of send
data cRegData and receive data cRspData.

The data necessary for the data transfer are to be stored in cRegData. The number of
characters contained in cRegData must be indicated in iReqgLen.

The data read from the transponder are contained in cRspData. iRspLen indicates the
number of characters in cRspData.

The parameter iDataFormat specifies whether cRegData and cRspData are to be
interpreted as a hex array or as a string.

Note the following: The buffer for the receive data cRspData must be dimensioned such
that all the receive data can be stored. This means in the case of iDataFormat=1 that the
size of the buffer cRspData is twice as large as in the case of iDataFormat=0. The
length of the send data (number of characters in cReqData) must be indicated in
iRegLen. If iDataFormat=1, then iReglLen is twice as large as in the case of
iDataFormat=0. The length indication for the receive buffer (cRspData) is to be handled
analogously.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

FEIG ELECTRONIC GmbH Page 99 (of 124) H9391-43e-1D-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.79. FEISC_0xBB_C1G2_TranspCmd

Function Function initiates data transfer with a Class 1 Gen 2 UHF transponder.

Syntax int FEISC_OxBB_C1G2 TranspCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR
ucMode, UCHAR ucTxPara, UCHAR ucRxPara, unsigned int uiTs, int iRspLength, UCHAR*
cReqgData, int iRegLen, UCHAR* cRspData, int* iRspLen)

Description The function initiates a data transfer for onel Class 1 generation 2 UHF transponder

located in the active zone of the Reader.
The parameter ucMode contains the mode for the reader.

The parameters ucTxPara, ucRxPara and uiTs controlles the timing of the RF
communication.

The parameter iRspLength contains the requested length (number of bits) of receive
data cRspData.

The data necessary for the data transfer are to be stored in cRegData. The number of
characters contained in cReqData must be indicated in iReqgLen.

The data read from the UHF transponder are contained in cRspData. iRspLen indicates
the number of characters in cRspData.

Note the following: The buffer for the receive data cRspData must be dimensioned such
that all the receive data can be stored.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

Return value

If there was no error, the return value contains the status byte of the reply protocol.

FEIG ELECTRONIC GmbH Page 100 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.80. FEISC_0xBC_CmdQueue

Function

A queue command task is started asynchronous to the application

Syntax

int FEISC_0xBC_CmdQueue(int iReaderHnd, int iMode, int iCmdCount, UCHAR*
ucCmdQueue, int iCmdQueuelLen, FEISC_TASK_INIT* plnit)

Description

This function starts the queue command as an asynchronous task. An asynchronous
task is an internal thread which sends the queue command to the reader and waits for
the reply for a time up to the timeout. Signaling of the reply data or the cancel condition
to the application is done by invoking a callback function.

The parameter iMode contains mode values. iCmdCount contains the number of
commands in the queue.

The queue data necessary for the data transfer are to be stored in ucCmdQueue. The
number of characters contained in ucCmdQueue must be indicated in iCmdQueuelLen.

All the data relevant to the callback function are contained in the structure
FEISC _TASK_INIT. This structure is described in greater detail in section 5.4.
Asynchronous tasks for relieving the load on applications.

The following setting is recommended:
FEISC_TASK_INIT Init;
Init.cbFctl = this->cbsTaskRspl; // callback function
Init.ucBusAdr = 255; // every reader will respond
Init.uiFlag = FEISC_TASKCB_1;
Init.uiTimeout = m_uiTimeout; // individual timeout
Init.pAny = this; // optional: This-Pointer

iReaderHnd is the handle for the reader object.

Cross-
references

Additional information about asynchronous tasks can be found in the section 5.4.
Asynchronous tasks for relieving the load on applications.

5.7.13. FEISC CancelAsyncTask

Note

More detailed information about the protocol [0xBC] Command Queue can be found in
the manual for the OBID® classic-pro Reader family.

Return value

In case of no error a 0 is returned. A value less than 0 indicate an error.

The list of error codes can be found in the Appendix.

FEIG ELECTRONIC GmbH Page 101 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.81. FEISC_0xBD_ ISOTranspCmd

Function Function initiates data transfer with an 1ISO14443A transponder.

Syntax int FEISC_OxBD_ISOTranspCmd(int iReaderHnd, UCHAR cBusAdr, int iMode, int
iRspLength, UCHAR* cReqgData, int iRegLen, UCHAR* cRspData, int* iRspLen, int
iDataFormat)

Description The function initiates a data transfer for multiple 1ISO14443A transponders located in the

active zone of the ISC Reader.
The parameter iMode contains the mode for the reader.

The parameter iRspLength contains the requested length (number of bits) of receive
data cRspData.

The data necessary for the data transfer are to be stored in cRegData. The number of
characters contained in cRegData must be indicated in iReqgLen.

The data read from the 1SO14443A transponder are contained in cRspData. iRspLen
indicates the number of characters in cRspData.

The parameter iDataFormat specifies whether cRegData and cRspData are to be
interpreted as a hex array or as a string.

Note the following: The buffer for the receive data cRspData must be dimensioned such
that all the receive data can be stored. This means in the case of iDataFormat=1 that the
size of the buffer cRspData is twice as large as in the case of iDataFormat=0. The
length of the send data (number of characters in cReqData) must be indicated in
iRegLen. If iDataFormat=1, then iReglLen is twice as large as in the case of
iDataFormat=0. The length indication for the receive buffer (cRspData) is to be handled
analogously.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

FEIG ELECTRONIC GmbH Page 102 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.82. FEISC_OxBE_ ISOTranspCmd

Function Function initiates data transfer with an 1ISO14443B transponder.

Syntax int FEISC_OxBE_ISOTranspCmd(int iReaderHnd, UCHAR cBusAdr, int iMode, int
iRspLength, UCHAR* cReqgData, int iRegLen, UCHAR* cRspData, int* iRspLen, int
iDataFormat)

Description The function initiates a data transfer for multiple 1ISO14443B transponders located in the

active zone of the ISC Reader.
The parameter iMode contains the mode for the reader.

The parameter iRspLength contains the requested length (number of bits) of receive
data cRspData.

The data necessary for the data transfer are to be stored in cRegData. The number of
characters contained in cReqData must be indicated in iReqgLen.

The data read from the 1SO14443B transponder are contained in cRspData. iRspLen
indicates the number of characters in cRspData.

The parameter iDataFormat specifies whether cRegData and cRspData are to be
interpreted as a hex array or as a string.

Note the following: The buffer for the receive data cRspData must be dimensioned such
that all the receive data can be stored. This means in the case of iDataFormat=1 that the
size of the buffer cRspData is twice as large as in the case of iDataFormat=0. The
length of the send data (number of characters in cReqData) must be indicated in
iRegLen. If iDataFormat=1, then iReglLen is twice as large as in the case of
iDataFormat=0. The length indication for the receive buffer (cRspData) is to be handled
analogously.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

FEIG ELECTRONIC GmbH Page 103 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.83. FEISC_OxBF_ ISOTranspCmd

Function Function initiates data transfer with an 1ISO15693 transponder.

Syntax int FEISC_OxBF_ISOTranspCmd(int iReaderHnd, UCHAR cBusAdr, int iMode, int
iRspLength, UCHAR* cReqgData, int iRegLen, UCHAR* cRspData, int* iRspLen, int
iDataFormat)

Description The function initiates a data transfer for multiple 1ISO15693 transponders located in the

active zone of the ISC Reader.
The parameter iMode contains the mode for the reader.

The parameter iRspLength contains the requested length (number of bits) of receive
data cRspData.

The data necessary for the data transfer are to be stored in cRegData. The number of
characters contained in cRegData must be indicated in iReqgLen.

The data read from the ISO15693 transponder are contained in cRspData. iRspLen
indicates the number of characters in cRspData.

The parameter iDataFormat specifies whether cRegData and cRspData are to be
interpreted as a hex array or as a string.

Note the following: The buffer for the receive data cRspData must be dimensioned such
that all the receive data can be stored. This means in the case of iDataFormat=1 that the
size of the buffer cRspData is twice as large as in the case of iDataFormat=0. The
length of the send data (number of characters in cReqData) must be indicated in
iRegLen. If iDataFormat=1, then iReglLen is twice as large as in the case of
iDataFormat=0. The length indication for the receive buffer (cRspData) is to be handled
analogously.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

FEIG ELECTRONIC GmbH Page 104 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.84. FEISC_0xC0O_SAMCmd, FEISC_0xC0_SAMCmd_Sync

Function Function initiates a data transfer with a SAM (Secure Access Module).
Syntax (1) int FEISC_0xCO_SAMCmd(int iReaderHnd, int iSlot, UCHAR* cReqData, int iRegLen,
FEISC_TASK_INIT* plnit)
(2)int FEISC_0xCO_SAMCmd_Sync(int iReaderHnd, UCHAR cBusAdr, int iSlot, int
iTimeout, UCHAR* cRegData, int iRegLen, UCHAR* cRspData, int* iRspLen)
Description The function (1) starts the SAM command as an asynchronous task. An asynchronous

task is an internal thread which sends the SAM command to the reader and waits for the
reply for a time up to the timeout. Signaling of the reply data or the cancel condition to
the application is done by invoking a callback function.

The function (2) executes the SAM command synchronous and returns the received
data in cRspData and the length of the received data in iRspLen.

The parameter iSlot identifies the SAM slot.

The parameter iTimeout defines the maximum timeout in the Reader. The host timeout
should be a little higher.

The queue data necessary for the data transfer are to be stored in cRegData. The
number of characters contained in cRegData must be indicated in iRegLen.

All the data relevant to the callback function for (1) are contained in the structure
FEISC _TASK_INIT. This structure is described in greater detail in section 5.4.
Asynchronous tasks for relieving the load on applications.

The following setting is recommended:

FEISC_TASK_INIT Init;
Init.cbFctl = this->cbsTaskRspl; // callback function

Init.ucBusAdr = 255; // every reader will respond
Init.uiFlag = FEISC_TASKCB_1;

Init.uiTimeout = m_uiTimeout; // individual timeout
Init.pAny = this; // optional: This-Pointer

iReaderHnd is the handle for the Reader object.

Cross-reference

Additional information about asynchronous tasks can be found in the section 5.4.
Asynchronous tasks for relieving the load on applications.

5.7.13. FEISC CancelAsyncTask

Note

More detailed information about the protocol [0xC0] SAM Command can be found in the
manual for the OBID® classic-pro Reader family.

Return value

If there was no error, the return value contains the status byte of the reply protocol.

FEIG ELECTRONIC GmbH Page 105 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.85. FEISC_0xC1_DESFireCmd

Function Function initiates a data transfer with a ISO 14443-4, Type A DESFire Transponder

Syntax int FEISC_O0xC1 _DESFireCmd(int iReaderHnd, UCHAR cSubCmd, UCHAR cMode,
UCHAR* cApplD, UCHAR cReaderKeylndex, UCHAR* cReqData, int iRegLen, UCHAR*
cRspData, int* iRspLen, int iDataFormat)

Description This function executes a DESFire specific command.

All parameters are declared in detail in the system manual of the designated reader.

The parameter iDataFormat specifies whether the request data in cReqData and
response data in cRspData is to be interpreted as a hex array (iDataFormat=0) or as a
string (iDataFormat=1).

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

5.7.86. FEISC_0xC2_MifarePlusCmd

Function Function initiates a data transfer with a ISO 14443, Type A MIFARE Plus Transponder

Syntax int FEISC_0xC2_MifarePlusCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR cSubCmd,
UCHAR cMode, UCHAR* cReqgData, int iRegLen, UCHAR* cRspData, int* iRspLen, int
iDataFormat)

Description This function executes a MIFARE Plus specific command.

All parameters are declared in detail in the system manual of the designated reader.

The parameter iDataFormat specifies whether the request data in cReqData and
response data in cRspData is to be interpreted as a hex array (iDataFormat=0) or as a
string (iDataFormat=1).

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

FEIG ELECTRONIC GmbH Page 106 (of 124) H9391-43e-ID-B.doc

OBID®

Manual ID FEISC V7.02.00

5.7.87. FEISC_0xC3_DESFireCmd

Function Function initiates a data transfer with a ISO 14443-4, Type A DESFire Transponder
Syntax int FEISC_O0xC3 DESFireCmd(int iReaderHnd, UCHAR cSubCmd, UCHAR cMode,

UCHAR* cRegData, int iRegLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)
Description This function executes a DESFire specific command.

All parameters are declared in detail in the system manual of the designated reader.

The parameter iDataFormat specifies whether the request data in cReqData and
response data in cRspData is to be interpreted as a hex array (iDataFormat=0) or as a
string (iDataFormat=1).

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value

If there was no error, the return value contains the status byte of the reply protocol.

FEIG ELECTRONIC GmbH Page 107 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

5.8. Support for multithreading

The functions in FEISC are essentially thread-safe, meaning function calls from several threads to
the library are possible as long as a communications procedure in a thread is never interrupted by
another communications procedure from another thread.

There are no protection mechanisms within the library which preclude a preemptive procedure
from another thread. This protection must be implemented on the application level.

A problem does occur when a callback function implemented using the FEISC_AddEventHandler
function is used to transfer a protocol string to the application and represent it in a protocol
window. Attempting to display the string in the window from out of the thread can cause the
program to crash (e.g. when using MFC in C++). The remedy is to buffer store and send a
Windows message with the API function SendMessage(..) to the window. This will serve to
decouple the threads. Even better in such cases is to select the FEISC_AddEventHandler
message methods from right at the outset.

Closing a window while a protocol is being represented can also cause a program crash. The
FEISC offers some help here in that the protocol output in the library can be specifically stopped in
all Reader objects. This is done by invoking FEISC_SetReaderPara(0, ,LockProtToApp", ,“). Next
continue checking using the function FEISC_GetReaderPara(0, ,IsProtToAppLocked*,) until all
the protocol outputs from the library are finished. If the function returns a 0, the protocol output is
not yet finished. If a 1 is returned, the window may be closed. Contrary to convention, the return
values are selected so that you can check them (in any case using C) for true.

C++ Example with MFC:

The member function OnClose is called when you want to close the window (View) by clicking with
the mouse on the close icon. The class FELogChildFrame derived from CMDIChildWnd is the
frame window of the Doc/View pair for the protocol output window. Cyclically recalling with a
WM_CLOSE message to yourself will cause a time loop which gives the FEISC time to close the
protocol outputs. Only when the function FEISC_GetReaderPara(0, ,IsProtToAppLocked®, ,*) no
longer returns a 0 may the window be closed using CMDIChildWnd::OnClose().

FEIG ELECTRONIC GmbH Page 108 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

void FELogChildFrame::OnClose()

{
I/l Message to library that all further protocol outputs are to be locked
FEISC_SetReaderPara(0, "LockProtToApp", "";
/I Query to library whether all protocol outputs are already finished
int iBack = FEISC_GetReaderPara(0, "IsProtToAppLocked", "");
if(iBack==0)
{
/I No, therefore with message to this repeated call from OnClose
this->SendMessage(WM_CLOSE, 0, 0);
return;
}
/' 1f you are here then all protocol outputs are finished
[/l and there is no longer a risk of crashing when the Doc/View pair is closed
CMDIChildwnd::OnClose();
}

FEIG ELECTRONIC GmbH Page 109 (of 124) H9391-43e-ID-B.doc

OBID®

Manual

ID FEISC V7.02.00

6. Appendix

6.1. Error codes

Error constants Value |Description
FEISC_ERR_NEWREADER_FAILURE -4000 | Error in creating a new Reader object
FEISC_ERR_EMPTY_LIST -4001 | Reader handle list is empty (no Reader objects
stored)
FEISC_ERR_POINTER_IS_NULL -4002 | Pointer to transfer parameter is NULL
FEISC_ERR_NO_MORE_MEM -4003 | No more system memory
FEISC_ERR_UNKNOWN_COMM_PORT -4004 | Unknown COM port
FEISC_ERR_UNSUPPORTED_FUNCTION -4005 | Unsupported function
FEISC_ERR_NO_USB_SUPPORT -4006 | No USB support (e.g. under NT4)
FEISC_ERR_OLD_FECOM -4007 | Old FECOM.DLL detected
FEISC_ERR_NO_VALUE -4010 | No data value
FEISC_ERR_UNKNOWN_HND -4020 | The transferred Reader handle is unknown
FEISC_ERR_HND_IS_NULL -4021 | The transferred Reader handle is 0
FEISC_ERR_HND_IS NEGATIVE -4022 | The transferred Reader handle is negative
FEISC_ERR_NO_HND_FOUND -4023 | No Reader handle found in Reader handle list
FEISC_ERR_PORTHND_IS_NEGATIVE -4024 | The transferred port handle is negative
FEISC_ERR_HND_UNVALID -4025 | Invalid port handle; the first byte (MSB) in the port
handle is invalid
FEISC_ERR_PROTLEN -4030 | Protocol length error
FEISC_ERR_CHECKSUM -4031 | Checksum error
FEISC_ERR_BUSY_TIMEOUT -4032 | Timeout after continuous busy messages
FEISC_ERR_UNKNOWN_STATUS -4033 | Unknown status byte
FEISC_ERR_NO_RECPROTOCOL -4034 | No USB receive protocol arrived
FEISC_ERR_CMD_BYTE -4035 | Wrong command byte in receive protocol
FEISC_ERR_TRANSCEIVE -4036 | General USB communications error
FEISC_ERR_REC_BUS_ADR -4037 | False bus address in receive protocol
FEISC_ERR_UNKNOWN_PARAMETER -4050 | Transfer parameter is unknown
FEISC_ERR_PARAMETER_OUT_OF_RANGE -4051 | Transfer parameter too large or too small
FEISC_ERR_ODD_PARAMETERSTRING -4052 | The transferred string contains an uneven number of
characters
FEISC_ERR_UNKNOWN_ERRORCODE -4053 | Unknown error code
FEISC_ERR_UNSUPPORTED_OPTION -4054 | Unsupported option
FEISC_ERR_UNKNOWN_EPC_TYPE -4055 | Unknown EPC type
FEISC_ERR_NO_PLUGIN -4060 | Installation of Plug-In object in reader object is
missing

FEIG ELECTRONIC GmbH

Page 110 (of 124)

H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

Error constants Value |Description

FEISC_ERR_PLUGIN_PRESENT -4061 | Error while installation of a second Plug-In object to
a reader object

FEISC_ERR_UNKNOWN_PLUGIN_ID -4062 | Unknown Plug-In ID

FEISC_ERR_PI_BUILD_DATA -4063 | Return value for an error in the Plug-In function
build_datastream

FEISC_ERR_PI_BUILD_FRAME -4064 | Return value for an error in the Plug-In function
build_protocol

FEISC_ERR_PI_SPLIT_FRAME -4065 | Return value for an error in the Plug-In function
split_protocol

FEISC_ERR_PI_SPLIT_DATA -4066 | Return value for an error in the Plug-In function
split_datastream

FEISC_ERR_BUFFER_OVERFLOW -4070 | Databuffer is too small

FEISC_ERR_TASK_STILL_RUNNING -4080 | Asynchronous task is still running

FEISC_ERR_TASK_NOT_STARTED -4081 | Start of asynchronous task failed

FEISC_ERR_TASK_TIMEOUT -4082 | Asynchronous task timed out: the reader has sent
no reply

FEISC_ERR_TASK_SOCKET_INIT -4083 | The socket for the task couldn’t be initialized.

FEISC_ERR_TASK_BUSY -4084 | Asynchronous task executes the callback function
and is just busy. The application must repeat the
function.

FEISC_ERR_THREAD_CANCEL_ERROR -4085 | Cancellation of internal thread failed.

FEISC_ERR_CRYPT_LOAD_LIBRARY -4090 | Error while loading openSSL library

FEISC_ERR_CRYPT_INIT -4091 | Error while crypto initialization

FEISC_ERR_CRYPT_AUTHENT_PROCESS -4092 | Error in authentication process

FEISC_ERR_CRYPT_ENCYPHER -4093 | Error in encypher process

FEISC_ERR_CRYPT_DECYPHER -4094 | Eror in decypher process

FEIG ELECTRONIC GmbH

Page 111 (of 124)

H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

6.2. List of variables

Variable Value range Default Unit | Description

PortHnd? 0 ... 4294967295 0 PortHandle for communication with ID FECOM, ID
FETCP or ID FEUSB

LogProt 0,1 0 If 1, then protocol are output through event flagging
LogFile 0,1 0 If 1, then writing all protocol strings into Logfile
feisc_log.txt
LogFilename Max. 256 chars feisc_log.txt Filename for LogFile
Language 7 - german 9 - language selection for internal strings.
9 - english
RecBusAdr 0...255 - - bus address from last receive protocol.

Read-only value.

ConvHexToString 0,1 0 - If 1, then all received bytes in scan option are
converted to a string.

Parameter is only useful, if the readers scan data
output is set to unformatted hex data.

FrameSupport LStandard®, “Standard” - Selection of the protocol frame of the send protocol.
LAdvanced” The frame of the received protocol is detected
automatically.

SendStr - - - Provides last send protocol with preceding date and
time of day

RecStr - - - Provides last receive protocol with preceding date and
time of day

ChkRecBusAdr 0,1 0 - If 1, then check of received bus address with the bus

address of send protocol. If bus addresses are
unequal, an error code is responded. Exceptions: bus
addresses 254 and 255.

LockProtToApp none - Multithreading support:
Locks the protocol output through event flagging in all
Reader objects

s. 5.8. Support for multithreading

UnlockProtToApp none - Multithreading support:
Unlocks protocol output through event flagging

s. 5.8. Support for multithreading

IsProtToAppLocked none - Multithreading support:
Asks whether all Reader objects are finished with
protocol output through event flagging

s. 5.8. Support for multithreading

%L Note the remarks in Section 5.7.2. FEISC NewReader

FEIG ELECTRONIC GmbH Page 112 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

6.3. List of constants for the FEISC_EVENT _INIT structure

The constants definitions are contained in the file FEISC.H.

Constants Value Use Description

FEISC_THREAD_ID 1 uiFlag Event flagging with thread message
FEISC_WND_HWND 2 uiFlag Event flagging with window message
FEISC_CALLBACK 3 uiFlag Event flagging with callback function
FEISC_EVENT 4 uiFlag Event flagging with Windows-API event
FEISC_CALLBACK_2 5 uiFlag Event flagging with 2. callback function
FEISC_CALLBACK_4 6 uiFlag Event flagging with 4. callback function
FEISC_PRT_EVENT 1 uiUse Flagging for send and receive protocols
FEISC_SNDPRT_EVENT 2 uiUse Flagging for send protocols
FEISC_RECPRT_EVENT 3 uiUse Flagging for receive protocols
FEISC_SCANNER_EVENT 4 uiUse Flagging for received scanner protocols

6.4. List of constants for TaskID and for the FEISC_TASK_INIT structure

The constants definitions are contained in the file FEISC.H.

Constants Value Use Description
FEISC_TASKID_FIRST_NEW_TAG 1 iTasklD one-time inventory
FEISC_TASKID_EVERY_NEW_TAG 2 iTasklD repeating inventory
FEISC_TASKID_NOTIFICATION 3 iTaskID unlimited task for receiving of notifications
FEISC_TASKID_SAM_COMMAND 4 iTasklD one-time task for receiving the SAM response
FEISC_TASKID_COMMAND_QUEUE 5 iTasklD one-time task for receiving the response of a Queue-
Command
FEISC_TASKID_MAX_EVENT 6 iTasklD unlimited task for receiving of Access notifications
FEISC_TASKID_PEOPLE_COUNTER 7 iTaskiD unlimited task for receiving People Counter events
FEISC_TASKCB_1 1 uiFlag select of callback function cbFctl
FEISC_TASKCB_2 2 uiFlag select of callback function cbFct2
FEISC_TASKCB_3 3 uiFlag select of callback function cbFct3
FEISC_TASK_CHANNEL_TYPE_AS_OPEN 1 uiChannelType | for all inventary tasks
FEISC_TASK_CHANNEL_TYPE_NEW_TCP 5 uiChannelType | for notification task

FEIG ELECTRONIC GmbH Page 113 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

FEIG ELECTRONIC GmbH Page 114 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC

V7.02.00

6.5. History

V7.01.06
e Extensions for Notifications for secured data transmission

¢ Internal extensions for Mode 0x21 of command [OX6E] Reader Diagnostic

V7.01.04

¢ Improvements for secured data transmission:
1.FEISC_0x52_GetBaud extended
2.Repeat of a protocol after a Crypto Processing Error

e Improvements for FEISC_0xCO_SAMCmd_Sync concerning timeout behavour

V7.01.00

e Improved thread safeness

e FEISC_StartAsyncTask returns an error code, if the internal Thread could not be executed.

e Windows:
1. Migration from Visual Studio 2008 to Visual Studio 2010.
2. DLL without MFC
3. First release of 64-Bit version
4

Dynamic binding to Log-Manager
o First Release for Mac OS X, V10.7.3 or higher

V7.00.01

e Bugfix for Keep-Alive in Notification-Task.

V7.00.00

e This version is not compatible with the previous versions. The reasons are listed below. Code

modifications in applications may be necessary.

e The structure struct FEISC_TASK_INIT is extended with new parameters for the Keep-Alive
option inside the Notification-Task. In consequence, the new parameter bKeepAlive must be
set to false or, which is the better approach, initialize the complete structure with 0 (e.g. with

memset). It is recommended to view each code line, which uses this structure.

FEIG ELECTRONIC GmbH Page 115 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

e New Plug-in API for connecting individual port types.
¢ Removed functions: FEISC_InstallPlugin and FEISC_RemovePlugin
e Windows / Windows CE:
1. Migration of the development environment from Visual Studio 6 to Visual Studio 2008.

2. Adaptation of the Callback declarations in struct _FEISC_EVENT_INIT and struct
_FEISC_TASK_INIT concerning the calling convention. Thus, this version of FEISC is not
compatible with the previous version and with applications compiled against the previous
version of FEISC. Code modifications are not necessary, but re-compilation of
applications is mandatory.

V6.02.01

e Bugfix for automatic deactivation of the crypto mode

V6.02.00

e New functions: FEISC_0xC3_DESFireCmd and FEISC_0xCO0_SAMCmd_Sync

Vv6.01.00

e Support for People Counter ID ISC.ANTGPC
e New function:
FEISC_0x9F Piggyback _Command

e Extensions in the structure FEISC_EVENT_INIT for event signaling

V6.00.00

e New option for encrypted data transmission by use of openSSL library in the version 0.9.8I (s.
5.6. Secured data transmission with encryption).

e New functions:
FEISC_0x8A_ReadConfiguration
FEISC_0x8B_WriteConfiguration
FEISC_0x8C_ResetConfiguration
FEISC_OxAD_WriteReaderAuthentKey
FEISC OxAE_ReaderAuthent

e New Error Codes

Error constants |Value ‘ Description

FEIG ELECTRONIC GmbH Page 116 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

Error constants Value |Description

FEISC_ERR_CRYPT_LOAD_LIBRARY -4090 | Error while loading openSSL library

FEISC_ERR_CRYPT_INIT -4091 | Error while crypto initialization

FEISC_ERR_CRYPT_AUTHENT_PROCESS -4092 | Error in authentication process

FEISC_ERR_CRYPT_ENCYPHER -4093 | Error in encypher process

FEISC_ERR_CRYPT_DECYPHER -4094 | Eror in decypher process
V5.07.13

¢ New functions: FEISC_0x1F_MAXDataExchange, FEISC_0x76_CheckAntennas,
FEISC_0xC2_MifarePlusCmd

Vv5.07.10

e Using of specialized receive algorithm adapted to OBID protocol frames in FECOM, enabled
with the parameter UseOBID. This option is temporary disabled for the internal Scanner
Thread.

e New functions: FEISC_0xC1_DESFireCmd, FEISC_0xA3_ Write_DES_AES _Keys

V5.07.05
e Check of receive protocol frame in FEISC_SendTransparent

¢ New functions: FEISC_0x8A_ReadConfiguration, FEISC_0x8B_WriteConfiguration,
FEISC_0x8C_ResetConfiguration,

V5.06.03

¢ New functions FEISC_0xC0_SAMCmd, FEISC_0xBC_CmdQueue,
FEISC_0xBB_C1G2_ TranspCmd

V5.05.05

e Optimizations in internal Notification-Thread (activated with FEISC_StartAsyncTask) for
communication channels with higher error rate, like GPRS.

o New parameter for FEISC_GetReaderPara and FEISC_SetReaderPara: LogFilename

Vv5.05.01

e USB support for Linux

FEIG ELECTRONIC GmbH Page 117 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

e New functions: FEISC_0xB4_EPC_UHF_Cmd, FEISC_0x6B_CentralizedRFSync
¢ New status bytes: 0x86, 0x18
e The Linux library is compiled with GCC 3.3.3 under SuSE Linux 9.1

V5.04.11

e Modified licence agreement

e New error code -4085

V5.04.10
¢ New Task: Notification for Reader with Notification Mode.

¢ Modifications in the structur FEISC_TASK_INIT. This structure is not compatible to the
previous version.

e New function: FEISC_0x34_ForceNotifyTrigger

e All threads available under Linux

e Support for new status bytes: 0xF1, 0xF2, OxF8

e New error codes: FEISC_ERR_TASK_SOCKET _INIT, FEISC_ERR_TASK_BUSY

Vv5.04.00

¢ New functions FEISC_StartAsyncTask, FEISC_CancelAsyncTask and
FEISC_TriggerAsyncTask.

e New error codes

V5.03.09
e New function FEISC_0x72_SetOutput.
e FEISC 0x22_ ReadBuffer supports extended features (TR-DATA, INPUT, STATUS).

Vv5.03.03

¢ New function FEISC_0xB3_EPCCmd.
e FEISC_Transmit and FEISC_Receive can be used with all port types.
o New status byte: 0x96 (1S014443-Error)

FEIG ELECTRONIC GmbH Page 118 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

Vv5.03.00

e The new version is not 100% downward compatible with the previous version because of
rename of function FEISC_0x66_FirmwareVersion. The new name is
FEISC_0x66_ReaderInfo.

Vv5.02.00
e Prepared for comming soon new USB protocols.

e The new version is not 100% downward compatible with the previous version because of
rename and modification of the parameter list of function FEISC_0x18DestroyEPC. The new
name is FEISC_0x18Destroy.

e New error code: -4055.

e Some minor bug fixes.

Vv5.01.19

e Support of Transponder I-CODE UID in protocol [0x18] Destroy.
e First Linux Release (SuSE Linux 8.2, GNU Compiler Collection V3.3-23, glibc V2.3.2-6)

V5.01.17

e Plug-In mechanism for integration of user-defined protocol drivers.

¢ All functions, except of FEISC_BuildProtocol and FEISC_SplitProtocol, are 100% downward
compatible with the previous version.

e FEISC BuildProtocol is renamed in FEISC BuildSendProtocol and has changes in the
function parameters.

e FEISC_SplitProtocol is renamed in FEISC_SplitRecProtocol and has changes in the
function parameters.

e New functions:
FEISC_BuildRecProtocol
FEISC_SplitSendProtocol
FEISC_Conv2StdProtocol
FEISC_Conf2AdvProtocol
FEISC_InstallPlugin
FEISC_RemovePlugin

e New protocol functions:
FEISC_0x22_ReadBuffer
FEISC_0x18_DestroyEPC
FEISC_0x87_SetSystemDate
FEISC_0x88_GetSystemDate

FEIG ELECTRONIC GmbH Page 119 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

FEISC_0x64_SystemReset.
e Support of the protocol [0x74] Read Input for ID ISC.PRH-A and -U Reader.
e Support of Advanced Protocol Frames with two length bytes.
e Thread-Security for created Reader-Obijects.

e Support of multithreading: every created Reader-Object has an own internal buffer. This
enables the simultaneous operation of multiple readers if every reader is connected on
different ports.

e New error codes:

Error constants Value |Description

FEISC_ERR_NO_VALUE -4010 | Error in the function FEISC_GetReaderPara

FEISC_ERR_NO_PLUGIN -4060 | Installation of Plug-In object in reader object is
missing

FEISC_ERR_PLUGIN_PRESENT -4061 | Error while installation of a second Plug-In object to

a reader object
FEISC_ERR_UNKNOWN_PLUGIN_ID -4062 | Unknown Plug-In ID

FEISC_ERR_PI_BUILD_DATA -4063 | Return value for an error in the Plug-In function
build_datastream

FEISC_ERR_PI_BUILD_FRAME -4064 | Return value for an error in the Plug-In function
build_protocol

FEISC_ERR_PI_SPLIT_FRAME -4065 | Return value for an error in the Plug-In function
split_protocol

FEISC_ERR_PI_SPLIT_DATA -4066 | Return value for an error in the Plug-In function
split_datastream

FEISC_ERR_BUFFER_OVERFLOW -4070 | Databuffer is too small

Vv5.01.00

e The new version is 100% downward compatible with the previous version.

e New functions: FEISC_0xBD_ISOTranspCmd, FEISC_OxBE_ISOTranspCmd

Integration of TCP/IP support if the support package ID FETCP is used

Bug-fix in in FEISC_O0xBF_ISOTranspCmd for parameter iDataFormat=1

Bus address of last receive protocol is saved and can be read out with FEISC_GetReaderPara

new error code: -4054 (FEISC_ERR_UNSUPPORTED_OPTION)

V5.00.00
e The new version is 100% downward compatible with the previous version.
¢ New functions: FEISC_0xA2_WriteMifareKeys, FEISC_0xB2_ISOCmd

e First Windows CE Version

FEIG ELECTRONIC GmbH Page 120 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

Vv4.09.00

Move of all constants from the file ferwdef.h to the file ferw.h. The file ferwdef.h is now
dispensable.

new function: FEISC_0x55 StartFlashLoaderEx which supports any busaddress and
replaces FEISC_0x55_ StartFlashLoader.

Internal check of received bus address (hormally disabled).

new parameter ChkRecBusAdr for the functions FEISC_SetReaderPara and
FEISC_GetReaderPara to activate the check of the received busaddress.

new parameter ConvHexToString for the functions FEISC_SetReaderPara and
FEISC_GetReaderPara to activate the conversion of raw hex data received from reader in
scan mode.

new error code FEISC_ERR_REC BUS ADR
new uiFlag constant for the structure FEISC_EVENT _INIT: FEISC_CALLBACK 2
new uiUse constant for the structure FEISC_EVENT INIT: FEISC_SCANNER_EVENT

V5.06.00 — V4.08.00

New function FEISC_0x6F_AntennaTuning
Removed functions:

FEISC_0x01_ MultiJobPoll
FEISC_0x01_ MultiJobPollAndState
FEISC_0x03_ MultiJobState
FEISC 0x11 GetSerNr

FEISC 0x14 WritePData

FEISC 0x15 ReadPData

FEISC _0x16_ WriteCData

FEISC 0x17_ ReadCData
FEISC_0x6B_InitNoiselLevel

V4.04.00 — V4.05.00

Internal Versions.

V4.03.00

Change of the function parameters in FEISC_OxBF_ISOTranspCmd.

FEIG ELECTRONIC GmbH Page 121 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

V4.02.00
e Check of the command byte in the response protocol
e Error correction for USB-Protocols

e Correction of small errors

Vv4.01.00

e New functions: FEISC_GetStatusText, FEISC_0xB1_ISOCustAndPropCmd,
FEISC_OxBF_ISOTranspCmd.

V4.00.00

This is the official Release Version. No changes.

Vv3.01.00

e FEISC.DLL only works together with FECOM.DLL in Version 2.00.00 and higher. Older
versions of FECOM.DLL will not allow communication to take place.

e Event flagging now also supports Windows API events.

Vv3.00.00

e Support of OBID® USB devices

e New functions: FEISC GetErrorText, FEISC_ GetLastError, FEISC_AddEventHandler,
FEISC_DelEventHandler.

e Limiting the port handle (transfer parameter iPortHnd in FEISC_NewReader) to OXOFFFFFFF.
The first byte (MSB) is reserved for distinguishing between the communication channels
(asynchronous/USB).

V2.01.00
e New parameters for FEISC_GetReaderPara: ERRCODE, ERRSTR, SENDSTR, RECSTR

e Renaming of the functions FEISC _0x85 SetTime in FEISC_0x85 SetSysTimer and
FEISC_0x86_GetTime in FEISC_0x86_GetSysTimer.

e New functions: FEISC_0x55_StartFlashLoader, FEISC_Ox6E_RdDiag and
FEISC_OxAO_RdLogin.

Version 2.00.03

e Eliminates errors in FEISC_0x01 MultiJobPoll, FEISC 0x01_ MultiJobPollAndState and
FEISC_0x03_MultiJobState.

FEIG ELECTRONIC GmbH Page 122 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

e New addition of command parameters for supporting multithreading: 5.8. Support for
multithreading

e see and the function FEISC_0x75_AdjAntenna.

Version 2.00.01

e Renaming of the function FEISC_0x23 InitBuffer to FEISC_0x33 InitBuffer, since the
command byte of the protocol has changed.

V2.00.00
New functions for the Long-Range-Reader ID ISCLR:

FEISC_0x01_MultiJobPoll
FEISC_0x01_MultiJobPollAndState
FEISC_0x03_MultiJobState
FEISC_0x21 ReadBuffer
FEISC_0x23_InitBuffer
FEISC_0x31_ReadDataBufferinfo
FEISC_0x32_ClearDataBuffer
FEISC_0x6B_InitNoiseThreshold
FEISC_0x6C_SetNoiselLevel

. FEISC_0x6D_GetNoiseLevel

. FEISC_0x84_ SetCFGMemLoc

.FEISC _0x85 SetTime

. FEISC 0x86_ GetTime

© 0o N OA®ONPRE

el el
W N PO

In addition the following functions were added to the parameter list:

FEISC_BuildProtocol: The parameter iDataFormat is new
FEISC_SplitProtocols: The parameter iDataFormat is new
FEISC_GetLastSendProt: The parameter iDataFormat is new
FEISC_GetLastRecProt: The parameter iDataFormat is new
FEISC_SendTransparent: The parameter iDataFormat is new
FEISC_Transmit: The parameter iDataFormat is new
FEISC_Receive: The parameter iDataFormat is new
FEISC_0x80_ReadConfBlock: The parameter iDataFormat is new
FEISC_0x81 WriteConfBlock: The parameter iDataFormat is new

© 0N TN PE

We have done this for the sake of Visual Basic programmers.

New query function added:

FEISC_GetLastRecProtLen

FEIG ELECTRONIC GmbH Page 123 (of 124) H9391-43e-ID-B.doc

OBID® Manual ID FEISC V7.02.00

FEIG ELECTRONIC GmbH Page 124 (of 124) H9391-43e-ID-B.doc

	Licensing agreement for use of the software
	Third-party Licensing agreements
	Licensing agreement of openSSL organization

	Contents:
	Introduction
	Shipment
	Windows XP / Vista / 7 / 8
	Windows CE
	Linux
	Mac OS X

	Changes since the previous version
	Installation
	32- and 64-Bit Windows XP/Vista/7/8
	Windows CE
	32- and 64-Bit Linux
	64-Bit Mac OS X

	Including into the application program
	Supported Development Tools
	Incorporating into Visual Studio
	Incorporating into Xcode

	Programming Interface
	Overview
	Thread security
	Parameter transfer
	Asynchronous tasks for relieving the load on applications
	Event flagging to applications5F
	Secured data transmission with encryption
	Overview
	Feedback of error cases
	Notes for Programmers

	List of functions
	Which function for which OBID i-scan® and OBID® classic-pro Reader
	FEISC_NewReader
	FEISC_DeleteReader
	FEISC_GetReaderList
	FEISC_GetDLLVersion
	FEISC_GetErrorText
	FEISC_GetStatusText
	FEISC_GetReaderPara
	FEISC_SetReaderPara
	FEISC_AddEventHandler
	FEISC_DelEventHandler
	FEISC_StartAsyncTask
	FEISC_CancelAsyncTask
	FEISC_TriggerAsyncTask
	FEISC_BuildSendProtocol
	FEISC_BuildRecProtocol
	FEISC_SplitSendProtocol
	FEISC_SplitRecProtocol
	FEISC_SendTransparent
	FEISC_Transmit
	FEISC_Receive
	FEISC_GetLastSendProt
	FEISC_GetLastRecProt
	FEISC_GetLastState
	FEISC_GetLastRecProtLen
	FEISC_GetLastError
	FEISC_0x18_Destroy
	FEISC_0x1A_Halt
	FEISC_0x1B_ResetQuietBit
	FEISC_0x1C_EASRequest
	FEISC_0x1F_MAXDataExchange
	FEISC_0x21_ReadBuffer
	FEISC_0x22_ReadBuffer
	FEISC_0x31_ReadDataBufferInfo
	FEISC_0x32_ClearDataBuffer
	FEISC_0x33_InitBuffer
	FEISC_0x34_ForceNotifyTrigger
	FEISC_0x52_GetBaud
	FEISC_0x55_StartFlashLoader
	FEISC_0x55_StartFlashLoaderEx
	FEISC_0x63_CPUReset
	FEISC_0x64_SystemReset
	FEISC_0x65_SoftVersion
	FEISC_0x66_ReaderInfo
	FEISC_0x69_RFReset
	FEISC_0x6A_RFOnOff
	FEISC_0x6B_CentralizedRFSync
	FEISC_0x6C_SetNoiseLevel
	FEISC_0x6D_GetNoiseLevel
	FEISC_0x6E_RdDiag
	FEISC_0x6F_AntennaTuning
	FEISC_0x71_SetOutput
	FEISC_0x72_SetOutput
	FEISC_0x74_ReadInput
	FEISC_0x75_AdjAntenna
	FEISC_0x76_CheckAntennas
	FEISC_0x80_ReadConfBlock
	FEISC_0x81_WriteConfBlock
	FEISC_0x82_SaveConfBlock
	FEISC_0x83_ResetConfBlock
	FEISC_0x85_SetSysTimer
	FEISC_0x86_GetSysTimer
	FEISC_0x87_SetSystemDate
	FEISC_0x88_GetSystemDate
	FEISC_0x8A_ReadConfiguration
	FEISC_0x8B_WriteConfiguration
	FEISC_0x8C_ResetConfiguration
	FEISC_0x9F_Piggyback_Command
	FEISC_0xA0_RdLogin
	FEISC_0xA2_WriteMifareKeys
	FEISC_0xA3_Write_DES_AES_Keys
	FEISC_0xAD_WriteReaderAuthentKey
	FEISC_0xAE_ReaderAuthent
	FEISC_0xB0_ISOCmd
	FEISC_0xB1_ ISOCustAndPropCmd
	FEISC_0xB2_ISOCmd
	FEISC_0xB3_EPCCmd
	FEISC_0xB4_EPC_UHF_Cmd
	FEISC_0xBB_C1G2_ TranspCmd
	FEISC_0xBC_CmdQueue
	FEISC_0xBD_ ISOTranspCmd
	FEISC_0xBE_ ISOTranspCmd
	FEISC_0xBF_ ISOTranspCmd
	FEISC_0xC0_SAMCmd, FEISC_0xC0_SAMCmd_Sync
	FEISC_0xC1_DESFireCmd
	FEISC_0xC2_MifarePlusCmd
	FEISC_0xC3_DESFireCmd

	Support for multithreading

	Appendix
	Error codes
	List of variables
	List of constants for the FEISC_EVENT_INIT structure
	List of constants for TaskID and for the FEISC_TASK_INIT structure
	History
	V7.01.06
	V7.01.04
	V7.01.00
	V7.00.01
	V7.00.00
	V6.02.01
	V6.02.00
	V6.01.00
	V6.00.00
	V5.07.13
	V5.07.10
	V5.07.05
	V5.06.03
	V5.05.05
	V5.05.01
	V5.04.11
	V5.04.10
	V5.04.00
	V5.03.09
	V5.03.03
	V5.03.00
	V5.02.00
	V5.01.19
	V5.01.17
	V5.01.00
	V5.00.00
	V4.09.00
	V5.06.00 – V4.08.00
	V4.04.00 – V4.05.00
	V4.03.00
	V4.02.00
	V4.01.00
	V4.00.00
	V3.01.00
	V3.00.00
	V2.01.00
	V2.00.00

